
SERENA®
DEPLOYMENT
AUTOMATION

Integration Guide

Serena Proprietary and Confidential Information



Copyright © 2011-2016 Serena Software, Inc. All rights reserved.

This document, as well as the software described in it, is furnished under license and may be used or copied only
in accordance with the terms of such license. Except as permitted by such license, no part of this publication
may be reproduced, photocopied, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, recording, or otherwise, without the prior written permission of Serena. Any reproduction
of such software product user documentation, regardless of whether the documentation is reproduced in whole
or in part, must be accompanied by this copyright statement in its entirety, without modification. This document
contains proprietary and confidential information, and no reproduction or dissemination of any information
contained herein is allowed without the express permission of Serena Software.

The content of this document is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Serena. Serena assumes no responsibility or liability for any errors
or inaccuracies that may appear in this document.

License and copyright information for 3rd party software included in this release can be found on the product's
news page at http://support.serena.com/ProductNews/default.aspx and may also be found as part of the
software download available at http://support.serena.com.

Trademarks

Serena, Dimensions, ChangeMan, Comparex, and StarTool are registered trademarks of Serena Software, Inc.
The Serena logo, PVCS, TeamTrack, License Manager and Composer are trademarks of Serena Software, Inc. All
other products or company names are used for identification purposes only, and may be trademarks of their
respective owners.

U.S. Government Rights

Any Software product acquired by Licensee under this Agreement for or on behalf of the U.S. Government, its
agencies and instrumentalities is "commercial software" as defined by the FAR. Use, duplication, and disclosure
by the U.S. Government is subject to the restrictions set forth in the license under which the Software was
acquired. The manufacturer is Serena Software, Inc., 2345 NW Amberbrook Drive, Suite 200, Hillsboro, OR
97006.

Part number: Product version: 6.1.3

Publication date: 2016-12-06

2 Serena® Deployment Automation



Table of Contents
Chapter 1: Welcome to Serena Deployment Automation ..........................................5

About This Documentation .................................................................................5

Chapter 2: Integrating with Deployment Automation ................................................7

Chapter 3: Integrating with SBM ...........................................................................9

Configuring the REST Grid Widgets .....................................................................9

Methods Supporting Composer Mode ............................................................... 10

Single Sign-On (SSO) Configuration .................................................................. 15

Configuring Tomcat for SSO ........................................................................... 15

Creating an SSO Authentication Realm ............................................................ 17

Sign On Using SSO ....................................................................................... 17

Single Sign Out............................................................................................. 17

Chapter 4: Integrating with Source Configuration Tools .......................................... 19

Chapter 5: Integrating with Dimensions CM ......................................................... 21

Dimensions CM Integration Example .................................................................. 21

Dimensions CM Integration Runtime Communication .......................................... 22

Dimensions CM Plugin Installation ..................................................................... 22

Configuring Dimensions CM Processes in Deployment Automation ........................ 23

Importing the Dimensions CM Sample Environment .......................................... 23

Importing the Sample Dimensions CM Application ............................................. 24

Configuring the Dimensions CM Application ...................................................... 25

Configuring Dimensions CM Component Processes ............................................. 26

Chapter 6: Integrating with ChangeMan ZMF ...................................................... 29

ChangeMan ZMF Integration Example ............................................................... 29

ChangeMan ZMF Integration Runtime Communication .......................................... 30

Configuring ZMF Connector on the Mainframe ................................................... 30

Installing the ZMF Connector Services ............................................................... 31

Configuring the Integration Files ..................................................................... 31

Loading the ChangeMan ZMF Plugin .................................................................. 32

Integration Guide 3



Configuring ChangeMan ZMF Processes in Deployment Automation ........................ 33

Chapter 7: Integrating with Nolio ........................................................................ 35

Nolio Integration Example .............................................................................. 35

Nolio Integration Runtime Communication ......................................................... 36

Nolio Plugin Installation.................................................................................... 36

Configuring Nolio Processes in Deployment Automation ....................................... 37

Importing the Sample Nolio Environment ......................................................... 37

Importing the Sample Nolio Application............................................................ 38

Configuring the Nolio Application ..................................................................... 38

Configuring Nolio Component Processes ......................................................... 39

Chapter 8: Creating Your Own Plugins.................................................................. 41

Plugin Creation Overview ................................................................................. 41

The plugin.xml File .......................................................................................... 42

The Header: <header> Element ..................................................................... 45

The Plugin Steps: <step-type> Element ......................................................... 45

Step Properties: <properties> Element ............................................................ 46

Step Commands: <command> Element ......................................................... 48

Step Post-Processing: <post-processing> Element .......................................... 49

The upgrade.xml file ....................................................................................... 50

The info.xml File ............................................................................................. 51

4 Serena® Deployment Automation



Chapter 1: Welcome to Serena
Deployment Automation

Serena Deployment Automation enables you to automate the deployment of application
changes. Benefits include continuous delivery and DevOps automation, reduction of
development costs, and increased deployment frequency without increased risk.

About This Documentation
This documentation gives information on integrating with Deployment Automation and is
intended for those who will configure the integrations. This information is also included in
the online Help in HTML format.

Integration Guide 5



Chapter 1: Welcome to Serena Deployment Automation

6 Serena® Deployment Automation



Chapter 2: Integrating with Deployment
Automation

The integrations provided by Deployment Automation enable you to execute deployment
related tasks through many Serena and third-party products. Most integrations with
Deployment Automation are implemented through the rich set of plugins provided with
the product. Plugins are used in Deployment Automation process steps. For details on the
plugins, see Serena Deployment Automation Plugin Guide.

For information on additional integration mechanisms, configuring integrations, and
writing plugins to create integrations of your own, see the following topics.

Chapter 3: Integrating with SBM [page 9]

Chapter 4: Integrating with Source Configuration Tools [page 19]

Chapter 5: Integrating with Dimensions CM [page 21]

Chapter 6: Integrating with ChangeMan ZMF [page 29]

Chapter 7: Integrating with Nolio [page 35]

Chapter 8: Creating Your Own Plugins [page 41]

Integration Guide 7



Chapter 2: Integrating with Deployment Automation

8 Serena® Deployment Automation



Chapter 3: Integrating with SBM

Communication between SBM and Deployment Automation enables release deployment
automation from SBM solutions. Integration mechanisms that enable this communication
are as follows:

• REST Grid Widgets

You can select Deployment Automation RESTful service data and populate SBM REST
Grid widgets directly from SBM Composer using Deployment Automation Composer
Mode. This communication enables the creation and linking of Deployment
Automation applications and environments and the access of Deployment
Automation processes for automation deployment tasks.

• User Auto-registration

When that user accesses functionality in Deployment Automation through SBM, the
SBM Single Sign-On (SSO) token sends the sign on information, and Deployment
Automation extracts the credentials from the SSO token. Those credentials are used
to register the user in Deployment Automation. See the SBM documentation for
more details on SSO.

• ALF Events

ALF Events are another mechanism that can be used to integrate SBM with
Deployment Automation.

For information on ALF Events that can be emitted from Deployment Automation, see
the Serena Deployment Automation User's Guide.

For more information on integrating with SBM Solutions, see the following topics:

• Configuring the REST Grid Widgets [page 9]

• Methods Supporting Composer Mode [page 10]

• Single Sign-On (SSO) Configuration [page 15]

Configuring the REST Grid Widgets
In SBM Composer, in a Visual Design layout REST Grid widget, you can get data directly
from Deployment Automation REST services.

To configure the REST grid widget in SBM Composer:

1. In the REST grid widget, in the Configure URL dialog, provide the REST service
method URL and add the composerMode=true request parameter.

For example:

http://srademo:8080/serena_ra/rest/deploy/component/
all?composerMode=true

Integration Guide 9



2. If the given Deployment Automation GET REST service method supports Composer
Mode, a sample JSON with returned property names will appear in the Result tab.
These do not include real data, but are the JSON structure.

3. In the Result tab, pick the corresponding property names to construct your REST
grid widget columns.

4. When you have finished picking the property names to construct your columns,
change the REST service method URL composerMode parameter to false.

For example:

http://srademo:8080/serena_ra/rest/deploy/component/
all?composerMode=false

5. Turn on SSO authentication.

6. Deploy the process app.

7. Verify the information in the SBM process app's user workspace.

The REST service methods that support Composer Mode are given in the following topic.

Methods Supporting Composer Mode
Only GET methods from the serena_ra/rest/application.wadl file are supported by
REST Grid widgets in SBM Composer, and only some of them.

Many of the methods that support Composer Mode are given in the following list. This list
is expanding, so please check the Knowledgebase at serena.com if you don't see the
method you need in the list, or just give the method you need a try to see if it supports
Composer Mode.

1. Get Application

/rest/deploy/application/{applicationId}

2. Get Applications

/rest/deploy/application

/rest/deploy/application/all

3. Get Application Components

/rest/deploy/application/{applicationId}/components

4. Get Application Environments

/rest/deploy/application/{applicationId}/environments/{inactive}

/rest/deploy/application/environments/forComponent/{componentParam}

/rest/deploy/application/{applicationId}/fullEnvironments

5. Get Application Process

/rest/deploy/applicationProcess/{applicationProcessId}/{version}

6. Get Application Processes

Chapter 3: Integrating with SBM

10 Serena® Deployment Automation

http://knowledgebase.serena.com


/rest/deploy/applicationProcess

/rest/deploy/application/{applicationId}/processes/{inactive}

/rest/deploy/application/processes/forComponent/{componentParam}

/rest/deploy/application/{applicationId}/executableProcesses

/rest/deploy/application/{applicationId}/fullProcesses

7. Get Application Process Unfilled Properties

/rest/deploy/applicationProcess/{applicationProcessId}/unfilledProps/{onlyRequired}

8. Get Application Properties

/rest/deploy/application/{applicationId}/applicationProperties

9. Get Component

/rest/deploy/component/{componentId}

10. Get Components

/rest/deploy/component

/rest/deploy/component/all

/rest/deploy/component/allFull

11. Get Component Versions

/rest/deploy/component/{componentId}/versions/{inactive}

12. Get Component Properties

/rest/deploy/component/{componentId}/componentProperties

13. Get Component Version Properties

/rest/deploy/component/{versionId}/componentVersionProperties

14. Get Component Process

/rest/deploy/componentProcess/{componentProcessId}/{version}

15. Get Component Processes

/rest/deploy/component/{componentId}/processes/{inactive}

/rest/deploy/component/{componentId}/fullProcesses/{inactive}

/rest/deploy/component/{componentId}/processesWithVersion

/rest/deploy/component/{componentId}/executableProcesses

16. Get Standalone Process

/rest/process/{processId}/{version}

17. Get Standalone Processes

/rest/process/{inactive}

18. Get Resource

Integration Guide 11



/rest/resource/resource/{resourceId}

19. Get Resources

/rest/resource/resource

/rest/resource/resource/tree

/rest/resource/resource/treeWithInactive

/rest/resource/resource/{resourceId}/resources

20. Get Environment

/rest/deploy/environment/{environmentId}

21. Get Environments

/rest/deploy/environment/all

22. Get Applications For Environment

/rest/deploy/environment/{environmentId}/applications

23. Get Environment Properties

/rest/deploy/environment/ {environmentId}/environmentProperties

24. Get Environment Properties For Components

/rest/deploy/environment/ {environmentId}/componentProperties

25. Get Environment Properties For Component

/rest/deploy/environment/{environmentId}/{componentId}/
propertiesForComponent

26. Get Active Agents

/rest/agent

27. Get Agent

/rest/agent/{agentId}

28. Get All Agents

/rest/agent/all

29. Get Agents Assignable To License

/rest/agent/assignableToLicense/{licenseId}

30. Get Agent Resources

/rest/agent/{agentId}/resources

31. Get Agent Pools

/rest/agent/{agentId}/pools

32. Get Component Config Templates

/rest/deploy/component/{componentId}/configTemplates/{active}

Chapter 3: Integrating with SBM

12 Serena® Deployment Automation



33. Get Component Task Definitions

/rest/deploy/component/{componentId}/taskDefinitions/{active}

34. Get All Status Plugins

/rest/plugin/statusPlugin

35. Get Status Plugin

/rest/plugin/statusPlugin/{statusPluginName}

36. Get Status Plugin Version Statuses

/rest/plugin/statusPlugin/{statusPluginName}/versionStatuses

37. Get Status Plugin Inventory Statuses

/rest/plugin/statusPlugin/{statusPluginName}/inventoryStatuses

38. Get Application Component Process Tree

/rest/deploy/application/{applicationId}/componentProcessTree

39. Get Application Unused Components

/rest/deploy/application/{applicationId}/unusedComponents

40. Get Application Task Definitions

/rest/deploy/application/{applicationId}/taskDefinitions/{active}

41. Get Snapshots

/rest/deploy/application/{applicationId}/snapshots/{inactive}

42. Get Component Process Prop Defs

/rest/deploy/componentProcess/{componentProcessId}/{version}/propDefs

43. Get Component Process Activity Tree

/rest/deploy/componentProcess/{componentProcessId}/activityTree

44. Get Component Process Change Log

/rest/deploy/componentProcess/{componentProcessId}/changelog

45. Get Application Task Definition

/rest/task/applicationTaskDefinition/{id}

46. Get Deployment Request

/rest/deploy/deploymentRequest/{deploymentRequestId}

47. Get Deployment Requests

/rest/deploy/deploymentRequest/table

48. Get Deployment Request Application Process Requests

/rest/deploy/ deploymentRequest /{deploymentRequestId}/
applicationProcessRequests

Integration Guide 13



49. Get Deployment Request Non Compliancy By Resource

/rest/deploy/deploymentRequest/{deploymentRequestId}/
noncompliancyByResource

50. Get Config Template

/rest/deploy/configTemplate/{componentId}/{name}/{version}

/rest/deploy/configTemplate/byRequest/{requestId}/{name}

51. Get Application Process Request

/rest/deploy/applicationProcessRequest/{applicationProcessRequestId}

52. Get Application Process Requests

/rest/deploy/applicationProcessRequest/table

53. Get Application Process Request Properties

/rest/deploy/applicationProcessRequest/{applicationProcessRequestId}/properties

54. Get Application Process Request Environment Properties

/rest/deploy/applicationProcessRequest/{applicationProcessRequestId}/
environmentProperties

55. Get Application Process Request Versions

/rest/deploy/applicationProcessRequest/{applicationProcessRequestId}/versions

56. Get Active Global Environments

- /rest/deploy/globalEnvironment

57. Get All Global Environments

- /rest/deploy/globalEnvironment/all

58. Get Active Applications For Global Environment

- /rest/deploy/globalEnvironment/{globalEnvironmentId}/applications

59. Get All Applications For Global Environment

- /rest/deploy/globalEnvironment/{globalEnvironmentId}/applications/all

60. Get Inactive Global Environments

- /rest/deploy/globalEnvironment/inactive

61. Get Global Environment

- /rest/deploy/globalEnvironment/{globalEnvironmentId}

62. Get Global Environment Properties

- /rest/deploy/globalEnvironment/{globalEnvironmentId}/
globalEnvironmentProperties

63. Get Global Environment Resource Mappings

Chapter 3: Integrating with SBM

14 Serena® Deployment Automation



- /rest/deploy/globalEnvironment/{globalEnvironmentId}/resources

64. Get Global Environment Not Mapped Resources

- /rest/deploy/globalEnvironment/{globalEnvironmentId}/resourcesNotMapped

65. Get Global Environment Not Mapped Resource Groups

- /rest/deploy/globalEnvironment/{globalEnvironmentId}/resourceGroupsNotMapped

Single Sign-On (SSO) Configuration
SSO enables Deployment Automation to integrate more easily with other Serena products.
Login information is passed automatically through SSO so that there is no need to prompt
for login credentials as information flows between products.

For details on figuring SSO, see the following topics:

• Configuring Tomcat for SSO [page 15]

• Creating an SSO Authentication Realm [page 17]

• Sign On Using SSO [page 17]

• Single Sign Out [page 17]

Configuring Tomcat for SSO

To use a typical Deployment Automation installation with SBM, you must update
configuration files to enable Serena Common Tomcat to find and use the correct SBM SSO
installation.

Before you can use SSO with Deployment Automation, you must have SBM installed and
SSO must be enabled. You must have the Deployment Automation server installed on the
same machine as the Serena Common Tomcat.

1. On the Deployment Automation server, stop the Serena Common Tomcat service.

2. Navigate to the application server conf directory. For example:
..\Serena\..\common\tomcat\8.0\alfssogatekeeper\conf

3. In gatekeeper-core-config.xml, change the following parameters as necessary to
replace the host and port values. Replace the placeholder variables shown here and
in the default file as $HTTP_OR_HTTPS, $HOSTNAME and $PORT, with either HTTP or
HTTPS, and the host name and port for your SBM SSO server. The default HTTP port
number for the SBM SSO server is 8085, and the default HTTPS port number for the
SBM SSO server is 8243.

<parameter name="SecurityTokenService"
Type="xsd:anyURI">$HTTP_OR_HTTPS://$HOSTNAME:$PORT/TokenService/
services/Trust<parameter>

<parameter name="SecurityTokenServiceExternal"
Type="xsd:anyURI">$HTTP_OR_HTTPS://$HOSTNAME:$PORT/TokenService/
services/Trust</parameter>

Integration Guide 15



<parameter name="FederationServerURL"
Type="xsd:anyURI">$HTTP_OR_HTTPS://$HOSTNAME:$PORT/ALFSSOLogin/
login</parameter>

For example:

<parameter name="SecurityTokenService" Type="xsd:anyURI">
HTTPS://myserver:8243/TokenService/services/
Trust<parameter>

<parameter name="SecurityTokenServiceExternal" Type="xsd:anyURI">
HTTPS://myserver:8243/TokenService/services/
Trust</parameter>

<parameter name="FederationServerURL" Type="xsd:anyURI">
HTTPS://myserver:8243/ALFSSOLogin/login
</parameter>

CAUTION:

For the gatekeeper core configuration, you use the SBM SSO HTTP or
HTTPS port number. Be careful not to confuse this with the port numbers
for Deployment Automation, which are by default 8080 and 8443 for HTTP
and HTTPS respectively.

4. Navigate to your program installation directory. For example:
..\Users\username\.serena\ra\conf\server

5. Modify the serena_ra_config.xml to set the ssoEnabled property to true as follows:

<ssoConfig>
<ssoEnabled>true</ssoEnabled>

</ssoConfig>

6. On the Deployment Automation server, start the Serena Common Tomcat service.

7. Verify the configuration by invoking the Deployment Automation user interface
through your implementation's URL, such as http://sdaserver:8080/serena_ra. If
when attempting to sign on, you receive the following error, you will need to update
your SSO STS certificates.

ALF SSO Gatekeeper error has occurred: Error obtaining security token.

Detail

Validation of WS-Federation token failed with code 40:Token issuer not
allowed.

See the Serena Knowledgebase item S140637 for more information.

Chapter 3: Integrating with SBM

16 Serena® Deployment Automation

http://knowledgebase.serena.com/InfoCenter/index?page=content&id=S140637


Upgrading Tomcat
If you upgrade Deployment Automation from a version that uses Tomcat 7 to one that
uses Tomcat 8, you must perform the steps in Configuring Tomcat for SSO [page 15]
again, including setting the parameters in the gatekeeper-core-config.xml file.

Set these parameters by copying over the corresponding strings from the old
gatekeeper-core-config.xml file. Copying and replacing the entire file from the old
Tomcat installation does not work.

Creating an SSO Authentication Realm
You may need to create the Single Sign-On authentication realm in Deployment
Automation. This is typically created for you automatically, although may need to be
created for upgrades.

To configure to use SSO:

1. Log into Deployment Automation as an administrative user.

2. Navigate to Administration > Security.

3. In the selection box, select Authentication (Users).

4. Click the Create Authentication Realm button.

5. In the Authorization Realm field, select Internal Security.

6. In the Type field, select Single Sign-On.

7. In the User Header Name field, enter ALFSSOAuthNToken.

8. Click Save.

Deployment Automation allows sign on and sign out through SSO.

Sign On Using SSO
Try signing on to the Deployment Automation user interface URL:
http://<host>:<port>/serena_ra/, where port is the Serena Common Tomcat HTTP
port.

Instead of the default Deployment Automation login page, the SBM Single Sign-On page
should appear.

Enter your user name and password to access Deployment Automation.

Single Sign Out
When you use Single Sign-On (SSO), Single Sign Out will work correctly as long as you
have the Deployment Automation server and the SSO server both configured to use the
same host.

Integration Guide 17



Chapter 3: Integrating with SBM

18 Serena® Deployment Automation



Chapter 4: Integrating with Source
Configuration Tools

The Source Config Type field enables you to select a product from which you want to load
artifacts into Deployment Automation as component versions. Deployment Automation
integrates with the source configuration tools to provide this functionality. Loading
artifacts into Deployment Automation enables you to track your artifacts as component
versions as they are deployed into application environments.

For details on selections for the Source Config Type fields while creating or editing
components, see "Creating Components" in the Serena Deployment Automation User's
Guide.

The source configuration tools that you can select are shown in the following table.

Source
Config Type

Description

AnthillPro Select this to load artifacts that are stored in AnthillPro into
Deployment Automation as component versions.

ClearCaseUCM Select this to load artifacts that are stored in ClearCase UCM into
Deployment Automation as component versions.

Dimensions Select this to load artifacts that are stored in Dimensions CM into
Deployment Automation as component versions.

File System
(Basic)

Select this to load artifacts into Deployment Automation from
directories in your file system. This imports all files in the
subdirectories and creates a component version either on a
designated name or based on a version name pattern. Automatic
import is not supported with this option.

File System
(Versioned)

Select this to load artifacts into Deployment Automation from
directories in your file system, creating a component version for each
subdirectory in the base path.

Git Select this to load artifacts that are stored in Git into Deployment
Automation as component versions.

Jenkins Select this to load artifacts that are stored in Jenkins into Deployment
Automation as component versions. This does not display additional
fields, but rather indicates that the Jenkins plugin for Deployment
Automation is configured and activated.

Integration Guide 19



Source
Config Type

Description

Luntbuild Select this to load artifacts that are stored in Luntbuild into
Deployment Automation as component versions.

Maven Select this to load artifacts that are stored in Maven into Deployment
Automation as component versions.

PVCS Select this to load artifacts that are stored in PVCS into Deployment
Automation as component versions.

Perforce Select this to load artifacts that are stored in a Perforce versioning
engine into Deployment Automation as component versions.

StarTeam Select this to load artifacts that are stored in Borland StarTeam into
Deployment Automation as component versions.

Subversion Select this to load artifacts that are stored in Subversion into
Deployment Automation as component versions.

TFS Select this to load artifacts that are stored in Microsoft Team
Foundation Server (TFS) into Deployment Automation as component
versions.

TFS_SCM Select this to load artifacts that are stored in TFS_SCM into
Deployment Automation as component versions.

TeamCity Select this to load artifacts that are stored in JetBrains TeamCity into
Deployment Automation as component versions.

TeamForge Select this to load artifacts that are stored in CollabNet TeamForge
into Deployment Automation as component versions.

uBuild Select this to load artifacts that are stored in uBuild into Deployment
Automation as component versions.

Chapter 4: Integrating with Source Configuration Tools

20 Serena® Deployment Automation



Chapter 5: Integrating with Dimensions
CM

You can integrate Deployment Automation with Serena Dimensions CM through the
provided Dimensions CM plugin.

The Dimensions CM plugin can be used to retrieve a list of baselines for selection from
Dimensions CM that are suitable for deployment, and then deploy the target baseline
using the Dimensions CM deployment functionality. The Dimensions CM plugin that
enables Deployment Automation and Dimensions CM to communicate uses the
Dimensions CM web services and passes predefined credentials and selection information,
such as the Dimensions CM product and stream.

The following topics describe the runtime communication and configuration of the
Dimensions CM plugin for use with Deployment Automation.

• Dimensions CM Integration Example [page 21]

• Dimensions CM Integration Runtime Communication [page 22]

• Dimensions CM Plugin Installation [page 22]

• Configuring Dimensions CM Processes in Deployment Automation [page 23]

Documentation References

For more information on using plugins, including details on the plugin steps, see the
Serena Deployment Automation Plugin Guide.

Dimensions CM Integration Example
All of the information needed for Deployment Automation to communicate with
Dimensions CM is embedded in the Deployment Automation application and component
processes, which use the Dimensions CM plugin.

The flow of communication between Deployment Automation and Dimensions CM is shown
in the following figure.

Integration Guide 21



Dimensions CM Integration Runtime
Communication

The communication between Deployment Automation and Dimensions CM proceeds as
follows:

1. Deployment Automation processes are configured for the Dimensions CM processes
to be executed.

2. When the Deployment Automation processes are run, they invoke the Dimensions
CM processes. The Deployment Automation processes must contain all connection
details for the target Dimensions CM server, product, stream, or other entities.

3. Deployment Automation requests information from Dimensions CM through SOAP
service calls.

4. The activity on the Dimensions CM server is initiated and Deployment Automation
polls the Dimensions CM server for the current job status.

5. Once the job status in Dimensions CM completes, either successfully or with a
failure, the Deployment Automation process step that initiated the transaction
completes.

Dimensions CM Plugin Installation
The Dimensions CM plugin must be extracted before it can be loaded into Deployment
Automation. Extract the plugin as follows:

1. Download the plugin installation file from the Deployment Automation download
location on the Serena website at http://www.serena.com/support. For example,
Dimensions_bundle_vvv.zip, where vvv is the version.

Chapter 5: Integrating with Dimensions CM

22 Serena® Deployment Automation

http://www.serena.com/support


2. Extract the files from the plugin bundle. It contains the plugin zip file and files
needed to configure the plugin. The plugin zip file is named DimensionsCM_vvv.zip,
where vvv is the version.

3. In Deployment Automation, navigate to Administration > Automation.

4. In the selection box, select Plugins.

5. Click the Load Plugin button.

6. Click Choose File and select the plugin zip file.

7. Click Load.

8. Configure the processes for the plugin that are required for the integration.

Configuring Dimensions CM Processes in
Deployment Automation

The following topics describe how to configure the processes and properties for optimal
use of the Dimensions CM plugin for use with Deployment Automation.

• Importing the Dimensions CM Sample Environment [page 23]

• Importing the Sample Dimensions CM Application [page 24]

• Configuring the Dimensions CM Application [page 25]

• Configuring Dimensions CM Component Processes [page 26]

Importing the Dimensions CM Sample Environment
For the quickest and most reliable implementation, you should import the sample
environment and application and modify the properties to suit your needs. Before you can
import the sample application processes, you must first import the environment that is
associated with the application.

One sample environment, UAT, is provided to use with all of the sample applications. If
you have already imported the environment to use with one of the other sample
applications, you should not import it again.

To import the sample UAT environment:

1. Navigate to the directory location where you downloaded the plugin bundle.

2. Extract the following JSON file if it is not already extracted:

Sample UAT.json

3. If you want to change the name of the environment that will be imported, open the
environment JSON file and change the name and description to whatever you want
to call your environment.

4. To import the environment:

a. In Deployment Automation, navigate to Management > Environments.

Integration Guide 23



b. Click the Application Environments button and then select Import
Environment.

c. Click Choose File and browse to the path of the Sample UAT.json file.

d. Click Import.

The environment should now be listed in your environments page, as UAT if you did not
change the name, or under the name you specified when you changed it.

Importing the Sample Dimensions CM Application
There are several Deployment Automation processes necessary to create the operations
needed for this plugin integration. To make it easier for you to configure your processes,
an exported sample application is included in the plugin bundle.

The sample application includes all of the application and component information needed
to get you started. You can import the exported file and modify the details to match your
implementation. Otherwise, you must configure all of your processes and properties
manually as described in the subsequent topics:

To import the sample application:

1. Navigate to the directory location where you downloaded the plugin bundle.

2. Extract the following JSON file if it is not already extracted:

<product> Sample Application.json

3. If you changed the name and description of the sample environment that you
imported, open the application JSON file and change the corresponding environment
name and description to the the ones you used in your environment JSON file.

4. To import the application processes:

a. In Deployment Automation, navigate to Management > Applications.

b. Click the Application Actions button and then select Import Application.

c. Click Choose File and browse to the path of the JSON file.

d. Click Import.

The application should now appear in the application list.

Chapter 5: Integrating with Dimensions CM

24 Serena® Deployment Automation



Configuring the Dimensions CM Application
An application process is used to run the component processes you need. Most of the
properties that are needed for the component processes should be set at the application
level, because many properties are used by more than one component process.

Tip: For the quickest implementation, import the sample environment and
application and modify the properties to suit your needs.

To configure the application:

1. Create an application that will contain your properties and component processes or
select an existing one. For example, DimCM Application.

2. If you imported the sample application, edit the application and change the
application name and description to match your implementation's values.

3. Add properties to your application that are common to all component processes, or
modify the existing imported values to match your system information. For example,
the connection information property values are as follows:

• DIMCM_DBCONNECTION: value <your DB connection name>

• DIMCM_DBNAME value <your DB name>

• DIMCM_SERVER value <your server name>

• DIMCM_SERVICE_USER value <your service user name>

• DIMCM_SERVICE_PASSWORD value <your service user password>

4. Add the following processes to your application if they have not already been
imported.

• Deploy Baseline

• Get Baselines

• Get Deployment Areas

• Get Products

• Get Projects

• Get Projects and Streams

• Get Stages

• Get Streams

• Promote Baseline

5. Add the properties to the application processes that the component processes will
inherit, or change them in the imported application. Following are example
properties for Deploy Baseline.

• name DIMCM_PRODUCT, label Product, value {applicationProcess:Get
Products;displaycols:product}

Integration Guide 25



• name DIMCM_PROJECT_NAME, label Project Name, value
{applicationProcess:Get Projects And
Streams;properties:{[name:DIMCM_PRODUCT,value:
DIMCM_PRODUCT]};displaycols:project_stream}

• name DIMCM_BASELINE_NAME, label Baseline Name, value
{applicationProcess:Get
Baselines;properties:{[name:DIMCM_PRODUCT,value:
DIMCM_PRODUCT]};displaycols:baseline}

• name DIMCM_STAGE_NAME, label Stage Name, value
RM${applicationProcess:Get Stages;displaycols:stage}

• name DIMCM_DEPLOYMENT_AREAS, label Deployment Areas, value
{applicationProcess:Get Deployment
Areas;properties:{[name:DIMCM_PRODUCT,value:
DIMCM_PRODUCT],[name:DIMCM_PROJECT_FILTER,value:
DIMCM_PROJECT_NAME],[name:DIMCM_STAGE_NAME,value:
DIMCM_STAGE_NAME]};displaycols:deployment_area}

• name DIMCM_REASONS, label Reasons, value none

Configuring Dimensions CM Component Processes
Component processes are used to combine the Dimensions CM plugin steps into the
processes needed to execute the set of Dimensions CM operations you need.

Note: The Dimensions CM plugin must be loaded and available before you
design a component process.

Tip: For the quickest implementation, import the sample environment and
application and modify the properties to suit your needs.

To configure the Dimensions CM component processes:

1. Create a component that will contain your component processes or select an existing
one. For example, DimCM Components.

2. Add the following processes to your component if they have not already been
imported.

• Action Baseline

• Demote Baseline

• Deploy Baseline

• Get Baselines

• Get Deployment Areas

• Get Products

• Get Projects and Streams

Chapter 5: Integrating with Dimensions CM

26 Serena® Deployment Automation



• Get Stages

• Promote Baseline

3. Specify values or variables for each component process step property that will not
be set by application properties.

4. Ensure that any properties that will be passed from the application processes are set
to Set a value here so that those property values will be replaced with the
application properties passed to them.

Integration Guide 27



Chapter 5: Integrating with Dimensions CM

28 Serena® Deployment Automation



Chapter 6: Integrating with ChangeMan
ZMF

You can integrate Deployment Automation with ChangeMan ZMF through the provided
ChangeMan ZMF plugin.

The integration between Deployment Automation and ChangeMan ZMF is implemented
through the ChangeMan ZMF plugin and the ZMF Connector.

Documentation References

• For more information on using the Deployment Automation ChangeMan ZMF plugin,
including details on the plugin steps, see the Serena Deployment Automation Plugin
Guide.

• For details on configuring the mainframe portion of ZMF Connector, see the Serena
ChangeMan ZMF Connector Configuration Guide.

The following topics describe the runtime communication and configuration of the
ChangeMan ZMF plugin and gives details on configuring the ZMF Connector services for
use with Deployment Automation.

• ChangeMan ZMF Integration Example [page 29]

• ChangeMan ZMF Integration Runtime Communication [page 30]

• Configuring ZMF Connector on the Mainframe [page 30]

• Installing the ZMF Connector Services [page 31]

• Configuring the Integration Files [page 31]

• Loading the ChangeMan ZMF Plugin [page 32]

• Configuring ChangeMan ZMF Processes in Deployment Automation [page 33]

ChangeMan ZMF Integration Example
You must configure ChangeMan ZMF communication on the z/OS mainframe and on the
Deployment Automation server before you use the ChangeMan ZMF plugin. The rest of the
information needed for Deployment Automation to communicate with ChangeMan ZMF is
embedded in the Deployment Automation application and component processes, which
use the ChangeMan ZMF plugin.

The flow of communication between Deployment Automation, and ChangeMan ZMF is
shown in the following figure.

Integration Guide 29



ChangeMan ZMF Integration Runtime
Communication

The communication between Deployment Automation and ChangeMan ZMF proceeds as
follows:

1. Deployment Automation processes are configured for the ChangeMan ZMF processes
to be executed.

2. When the Deployment Automation processes are run, they invoke the ChangeMan
ZMF processes. The processes use a proxy ID to logon on behalf of a designated
username, typically the Deployment Automation user name, to initiate the requested
operations in ChangeMan ZMF.

3. When the ChangeMan ZMF operations complete, an event is sent from the SERNET
NTFYURL and the Deployment Automation listener detects it. When the operations
are complete, Deployment Automation retrieves ChangeMan ZMF information
through the listener and puts it in the Deployment Automation execution log.

4. The Deployment Automation process is updated with the completion status and the
component process step is flagged as successful or failed.

Configuring ZMF Connector on the Mainframe
The mainframe portion of the ZMF Connector should be configured by your ChangeMan
ZMF administrator or by someone familiar with the IBM mainframe and ChangeMan ZMF.
This part of the configuration is required for the integration between ChangeMan ZMF and
Deployment Automation to work.

Chapter 6: Integrating with ChangeMan ZMF

30 Serena® Deployment Automation



Refer to "Configuring ChangeMan ZMF Connector on the Mainframe" in the Serena
ChangeMan ZMF Connector Configuration Guide.

Installing the ZMF Connector Services
The ZMF Connector services must be installed into the Deployment Automation application
server before the Deployment Automation ChangeMan ZMF plugin can be used to access
ChangeMan ZMF.

Important: The services are supported only in a Tomcat application server.

Install the services as follows:

1. Download the ZMF Connector bundle zip file from the download location for your
version of ChangeMan ZMF on the Serena website at http://www.serena.com/
support. For example, ZMF_bundle_vvv.zip, where vvv is the version of ZMF
Connector.

2. Extract the files from the zip file.

3. Stop the Serena Common Tomcat under which Deployment Automation is running.

4. Copy the ZMF Connector war files to the application server location where the
Deployment Automation serena_ra.war file is deployed. The default location is as
follows:

C:\Program Files\Serena\common\tomcat\8.0\webapps

The ZMF Connector war files are as follows:

almzmf.war

almzmfalf.war

almzmfws.war

almsernet.war

5. Start the application server. For example, Serena Common Tomcat.

Configuring the Integration Files
Additional files must be configured in the application server before the integration to
ChangeMan ZMF can be used.

Configure the additional files as follows:

1. Download the Deployment Automation ChangeMan ZMF plugin bundle from the
Deployment Automation downloads on the Serena website at
http://www.serena.com/support. For example, ChangeMan_ZMF_Bundle_vvv.zip,
where vvv is the version of Deployment Automation.

2. Extract the plugin zip file, such as ZMF_6.1.3_v_bbb.zip, from the bundle, where v
is the version of the plugin and bbb is the build number.

3. Copy the zmf-core-CURRENT.jar from the plugin zip file to the Deployment
Automation application server as follows:

Integration Guide 31

http://www.serena.com/support
http://www.serena.com/support
http://www.serena.com/support


a. In the plugin bundle, navigate to the lib directory. For example:

C:\Users\bjoson\Downloads\ZMF_6.1.3_v_bbb.zip\lib

b. Copy the zmf-core-CURRENT.jar file to the Deployment Automation application
server WEB-INF\lib directory. The default path is:

C:\Program Files\Serena\common\tomcat\8.0\webapps\serena_ra\WEB-
INF\lib

4. In the Deployment Automation application server WEB-INF directory, such as

C:\Program Files\Serena\common\tomcat\8.0\webapps\serena_ra\WEB-INF,

edit the web.xml file and add the following lines before the </web-app> tag.

<servlet>
<servlet-name>ZMFALFEventRouter</servlet-name>
<servlet-class>com.serena.servlet.ZMFALFEventRouter</servlet-class>
<init-param>

<param-name>redirectURL</param-name>
<param-value>/</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>ZMFALFEventRouter</servlet-name>
<url-pattern>/servlet/ZMFALFEventRouter</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ZMFALFEventRouter</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

5. Restart the application server. For example, Serena Common Tomcat.

Loading the ChangeMan ZMF Plugin
The current version of the ChangeMan ZMF plugin must be loaded into Deployment
Automation.

Note: If you have just restarted the application server, wait for it to start before
starting this procedure.

Load the plugin as follows:

1. In Deployment Automation, navigate to Administration > Automation.

2. In the selection box, select Plugins.

3. Click the Load Plugin button.

4. Click Choose File and select the ChangeMan ZMF plugin zip file, such as
ZMF_6.1.3_v_bbb.zip, that you extracted from the plugin bundle earlier.

Chapter 6: Integrating with ChangeMan ZMF

32 Serena® Deployment Automation



5. Click Load.

Configuring ChangeMan ZMF Processes in
Deployment Automation

After you have configured the integration and loaded the plugin, you should proceed with
configuring the ChangeMan ZMF processes in Deployment Automation.

For information on configuring processes, see the Serena Deployment Automation User's
Guide.

For details on the plugin steps, see the Serena Deployment Automation Plugin Guide or
Serena Deployment Automation Plugin Index.

Integration Guide 33



Chapter 6: Integrating with ChangeMan ZMF

34 Serena® Deployment Automation



Chapter 7: Integrating with Nolio

You can integrate Deployment Automation with CA Nolio through the provided Nolio
plugin.

The Nolio plugin can be used to retrieve a list of Nolio processes for selection from Nolio
that are suitable for execution, and then run the Nolio process on the target environment
using the Nolio runProcess2 functionality. The Nolio plugin that enables Deployment
Automation and Nolio to communicate uses the Nolio web services and will pass a number
of predefined credentials and selection information for the Nolio application, environment,
servers, and so on.

The following topics describe the runtime communication and configuration of the Nolio
plugin for use with Deployment Automation.

• Nolio Integration Example [page 35]

• Nolio Integration Runtime Communication [page 36]

• Nolio Plugin Installation [page 36]

• Configuring Nolio Processes in Deployment Automation [page 37]

Documentation References

For more information on using plugins, including details on the plugin steps, see the
Serena Deployment Automation Plugin Guide.

Nolio Integration Example
All of the information needed for Deployment Automation to communicate with Nolio is
embedded in the Deployment Automation application and component processes, which
use the Nolio plugin.

The flow of communication between Deployment Automation and Nolio is shown in the
following figure.

Integration Guide 35



Nolio Integration Runtime Communication
The communication between Deployment Automation and Nolio proceeds as follows:

1. Deployment Automation processes are configured for the Nolio processes to be
executed.

2. Deployment Automation requests information from Nolio through SOAP service calls.

3. Deployment Automation polls for the status of the Nolio processes.

4. Once the process in Nolio completes, either successfully or with a failure, the
Deployment Automation process step that initiated the transaction completes.

Nolio Plugin Installation
The Nolio plugin must be extracted before it can be loaded into Deployment Automation.
Extract the plugin as follows:

1. Download the plugin installation file from the Deployment Automation download
location on the Serena website at http://www.serena.com/support. For example,
Nolio_bundle_vvv.zip, where vvv is the version.

2. Extract the files from the plugin bundle. It contains the plugin zip file and files
needed to configure the plugin. The plugin zip file is named Nolio_vvv.zip, where
vvv is the version.

3. After the application server is started, in Deployment Automation, navigate to
Administration > Automation.

4. In the selection box, select Plugins.

5. Click the Load Plugin button.

Chapter 7: Integrating with Nolio

36 Serena® Deployment Automation

http://www.serena.com/support


6. Click Choose File and select the plugin zip file.

7. Click Load.

8. Configure the processes for the plugin that are required for the integration.

Configuring Nolio Processes in Deployment
Automation

The following topics describe how to configure the processes and properties for optimal
use of the Nolio plugin for use with Deployment Automation.

• Importing the Sample Nolio Environment [page 37]

• Importing the Sample Nolio Application [page 38]

• Configuring the Nolio Application [page 38]

• Configuring Nolio Component Processes [page 39]

Importing the Sample Nolio Environment
For the quickest and most reliable implementation, you should import the sample
environment and application and modify the properties to suit your needs. Before you can
import the sample application processes, you must first import the environment that is
associated with the application.

One sample environment, UAT, is provided to use with all of the sample applications. If
you have already imported the environment to use with one of the other sample
applications, you should not import it again.

To import the sample UAT environment:

1. Navigate to the directory location where you downloaded the plugin bundle.

2. Extract the following JSON file if it is not already extracted:

Sample UAT.json

3. If you want to change the name of the environment that will be imported, open the
environment JSON file and change the name and description to whatever you want
to call your environment.

4. To import the environment:

a. In Deployment Automation, navigate to Management > Environments.

b. Click the Application Environments button and then select Import
Environment.

c. Click Choose File and browse to the path of the Sample UAT.json file.

d. Click Import.

The environment should now be listed in your environments page, as UAT if you did not
change the name, or under the name you specified when you changed it.

Integration Guide 37



Importing the Sample Nolio Application
There are several Deployment Automation processes necessary to create the operations
needed for this plugin integration. To make it easier for you to configure your processes,
an exported sample application is included in the plugin bundle.

The sample application includes all of the application and component information needed
to get you started. You can import the exported file and modify the details to match your
implementation. Otherwise, you must configure all of your processes and properties
manually as described in the subsequent topics:

To import the sample application:

1. Navigate to the directory location where you downloaded the plugin bundle.

2. Extract the following JSON file if it is not already extracted:

<product> Sample Application.json

3. If you changed the name and description of the sample environment that you
imported, open the application JSON file and change the corresponding environment
name and description to the the ones you used in your environment JSON file.

4. To import the application processes:

a. In Deployment Automation, navigate to Management > Applications.

b. Click the Application Actions button and then select Import Application.

c. Click Choose File and browse to the path of the JSON file.

d. Click Import.

The application should now appear in the application list.

Configuring the Nolio Application
An application process is used to run the component processes you need. Most of the
properties that are needed for the component processes should be set at the application
level, because many properties are used by more than one component process.

Tip: For the quickest implementation, import the sample environment and
application and modify the properties to suit your needs.

To configure the application:

1. Create an application that will contain your properties and component processes or
select an existing one. For example, Nolio Application.

2. If you imported the sample application, edit the application and change the
application name and description to match your implementation's values.

3. Add properties to your application that are common to all component processes, or
modify the existing imported values to match your system information. For example,
the connection information property values are as follows:

• NOLIO_SERVER_URL: value <your server URL>

Chapter 7: Integrating with Nolio

38 Serena® Deployment Automation



• NOLIO_SERVICE_USER: value <your admin username>

• NOLIO_SERVICE_PASSWORD: value <your admin password>

4. Add the following processes to your application if they have not already been
imported.

• Get Applications

• Get Environments

• Get Processes

• Get Process Tags

• Get Server Types

• Run Process

5. Add the properties to the application processes that the component processes will
inherit, or change them in the imported application. Most properties use variables,
such as the following for Run Process:

• Application: value ${p:NOLIO_APPLICATION}

• Environment: value ${p:NOLIO_ENVIRONMENT}

• Process: value ${p:NOLIO_PROCESS}

• Process Tag: value ${p:NOLIO_PROCESS_TAG}

• Servers: value ${p:NOLIO_SERVERS}

• Parameters: value ${p:NOLIO_PARAMETERS}

Configuring Nolio Component Processes
Configure your Nolio component processes. Component processes are used to combine
the plugin steps into the processes needed to execute the set of operations you need. You
can either configure existing processes imported from JSON files or configure all of them
manually.

Note: The Nolio plugin must be loaded and available before you design a
component process.

Tip: For the quickest implementation, import the sample environment and
application and modify the properties to suit your needs.

To configure the Nolio component processes:

1. Create a component that will contain your component processes or select an existing
one. For example, Nolio Components.

2. Add the following processes to your component if they have not already been
imported.

• Get Agents

Integration Guide 39



• Get Applications

• Get Environments

• Get Processes

• Get Process Tags

• Get Server Types

• Run Process

3. Specify values or variables for each component process step property that will not
be set by the parent application properties.

4. Ensure that any properties that will be passed from the application processes are set
to Set a value here so that those property values will be replaced with the
application properties passed to them.

Chapter 7: Integrating with Nolio

40 Serena® Deployment Automation



Chapter 8: Creating Your Own Plugins

You can create your own plugins if there is not an existing plugin that meets your needs.
See the following for details.

• Plugin Creation Overview [page 41]

• The plugin.xml File [page 42]

• The upgrade.xml file [page 50]

• The info.xml File [page 51]

Plugin Creation Overview
A plugin consists of a ZIP file that contains a set of required and optional files in the root
directory and supporting files located as needed. To make the plugin available for general
use, this ZIP file must be loaded into Deployment Automation. The plugin files are
described in the following section.

See also:

• A short tutorial to create a "HelloWorld" plugin, available from the Community.

File Description

plugin.xml This file describes the steps provided by the new plugin. This file also
contains informational elements such as description, name, and the
location of the plugin in the Process Editor plugin list hierarchy. It is the
main plugin file to create. (Required)

upgrade.xml This file is used by Deployment Automation to upgrade plugins between
versions. Plugins are versioned, like all Serena Deployment Automation
entities, and this file is used to describe how to upgrade previous
versions of the plugin to the latest.

(Required)

info.xml This file is used to detail the high-level plugin information such as who
created the plugin and its current version. Although optional, Serena
recommends the use of the info.xml file.

Other Any supporting script files required by the plugin.

The plugin.xml file steps describe the functionality that can be used in the release
process. Each step is defined by the use of the <step-type> element and contains the
following supporting information:

Integration Guide 41

http://deploy-community.serena.com/community/forums


Element Description

<properties> A container for <property> child elements, and can contain any
number of <property> elements. Property values can be supplied at
design-time or run-time.

In addition to the properties defined locally in a step, a step can also
access properties defined in other steps or even other plugins. This can
be done by using the namespaces of the other steps or plugins to
reference the property that is needed. For example, <step-
name>.<property-name>

<command> This element is used to detail the command that the plugin step is
invoking. This command can be a shell script, an operating system
command, or a program. It has a set of additional XML attributes that
describe how the command is to be invoked.

<post-
processing>

This element describes the logic that is to be invoked once the
command has finished running and some kind of error-handling or
post-command processing is desired.

Plugin steps are performed by an agent that has been configured to run on a target
environment, so you must ensure that any step commands configured in the plugin are
able to run on those agents. This may require additional software to be installed or
licenses to be added as needed. If the appropriate software cannot be invoked correctly,
an error message will be shown.

Once a plugin is created, load it into Deployment Automation to make it available to
users.

To load a plugin:

1. Create a ZIP archive that contains the XML files (plugin.xml, upgrade.xml, and
info.xml) along with any additional scripts required by the plugin.

2. Navigate to Administration > Automation.

3. In the selection box, select Plugins.

4. Click the Load Plugin button.

5. Click Choose File and select the ZIP file.

6. Click Load.

The plugin.xml File
The functionality that a plugin provides is defined in the plugin.xml file. The structure of
this file consists of the following:

• elements used by all plugins: the document type declaration, and the <plugin> root
element that identifies the XML schema type, PluginXMLSchema_v1.xsd

• a header element that provides the identity, version, and description of the plugin

Chapter 8: Creating Your Own Plugins

42 Serena® Deployment Automation



• the step definitions; each step is delimited by a <step-type> element that defines
the functionality and properties available to that step

Example

The following shows an example of a typical plugin.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://www.serena.com/PluginXMLSchema_v1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<header>

<identifier id="plugin_id" version="version_number" name="Plugin Name"/>
<description/>
<tag>Plugin_type/Plugin_subtype/Plugin_name</tag>

</header>
<step-type name="Step_Name">

<description/>
<properties>

<property name="property_name" required="true">
<property-ui type="textBox" label="Driver Jar"

description="The full path to the jdbc driver jar to use."
default-value="${p:resource/sqlJdbc/jdbcJar}"/>

</property>
</properties>
<post-processing>

<![CDATA[
if (properties.get("exitCode") != 0) {

properties.put("Status", "Failure");
}
else {

properties.put("Status", "Success");
}

]]>
</post-processing>
<command program="${path_to_tool">

<arg value="parameters_passed_to_tool"/>
<arg path="${p:jdbcJar}"/>
<arg file="command_to_run"/>
<arg file="${PLUGIN_INPUT_PROPS}"/>
<arg file="${PLUGIN_OUTPUT_PROPS}"/>

</command>
</step-type>

</plugin>

The following sections describe the elements of the plugin.xml file and their appropriate
attributes.

• The Header: <header> Element [page 45]

• The Plugin Steps: <step-type> Element [page 45]

• Step Properties: <properties> Element [page 46]

• Step Commands: <command> Element [page 48]

Integration Guide 43



• Step Post-Processing: <post-processing> Element [page 49]

Chapter 8: Creating Your Own Plugins

44 Serena® Deployment Automation



The Header: <header> Element

<header> Element

The mandatory header element identifies the plugin and contains the following child
elements:

<header>
Child
Elements

Description

<identifier> This element's three attributes identify the plugin:

• version

API version (the version number used for upgrading plugins is
defined in the info.xml file).

• id

Identifies the plugin.

• name

The plugin name that appears on the Automation Plugins pane in
Deployment Automation.

All values must be enclosed within single or double quotes.

<description> Describes the plugin. It appears on the Automation Plugins pane in
Deployment Automation.

<tag> Defines where the plugin will appear on the process editor's
hierarchy of available plugins. The location is defined by a string
separated by slashes. For example, the Tomcat definition is:
Application Server/Java/Tomcat. The Tomcat steps will be listed
beneath the Tomcat item, which in turn is nested within the other
two.

The following is a sample header definition:

<header>
<identifier version="3" id="com.&company;.air.plugin.Tomcat"name="Tomcat"/>
<description>
The Tomcat plugin is used during deployments to execute Tomcat run-book
automations and deploy or undeploy Tomcat applications.

</description>
<tag>Application Server/Java/Tomcat</tag>

</header>

The Plugin Steps: <step-type> Element

Integration Guide 45



Plugin steps are defined with the step-type element; each step-type represents a single
step in the Serena Deployment Automation process editor. A step-type element has a
name attribute and several child elements: description, properties, command, and
post-processing.

The mandatory name attribute identifies the step. The description and name specified in
the element will appear in the Process Editor.

<step-type name="Start">
<description>Start Apache HTTP server</description>

Step Properties: <properties> Element
The properties element is a container for properties, which are defined with the
property tag. Each step has a single properties element; a properties element can
contain any number of property child elements.

A property tag has a mandatory name attribute, optional required attribute, and child
elements, property-ui and value, which are defined in the following table.

Chapter 8: Creating Your Own Plugins

46 Serena® Deployment Automation



<property> Element table

<property>
Child
Elements

Description

<property-
ui>

Defines how the property is presented to users in the Deployment Automation Process
Editor. This element has several attributes:

• label

Identifies the name of the property shown in the Process Editor Item Properties
tab.

• description

Help shown for the property in the Item Properties tab.

• default-value

The default value of the property. This is displayed in the Item Properties tab and is
used by the step if left unchanged.

• type

Identifies the type of widget displayed to users. Possible values are:

▪ textBox

Enables users to enter an arbitrary amount of text, limited to 4064 characters.

▪ textAreaBox

Enables users to enter an arbitrary amount of text in a multi-line text box. The
length of the text is limited to 4064 characters.

▪ secureBox

Used for passwords. Similar to textBox except values are redacted.

▪ checkBox

Displays a check box. If checked, a value of true will be used; otherwise the
property is not set.

▪ selectBox

Requires a list of one or more values which will be displayed in a drop-down list
box. Configuring a value is described below.

<value> Used to specify values for a selectBox. Each value has a mandatory label attribute
which is displayed to users, and a value used by the property when selected. Values
are displayed in the order they are defined.

Here is a sample <property> definition:

Integration Guide 47



<property name="onerror" required="true">
<property-ui type="selectBox"

default-value="abort"
description="Action to perform when statement fails: continue, stop, abort."
label="Error Handling"/>

<value label="Abort">abort</value>
<value label="Continue">continue</value>
<value label="Stop">stop</value>

</property>

Step Commands: <command> Element
Steps are executed by invoking the command line command specified by the <command>
element. The <command> element's program attribute defines the location of the tool that
will perform the command. It bears repeating that the tool must be located on the host
and the agent invoking the tool must have access to it. In the following example, the
location of the tool that will perform the command, the scripting tool groovy is being
invoked, but any command can be run as long as it is in the path and available.

<command program='${GROOVY_HOME}/bin/groovy'>

The actual command and any parameters it requires are passed to the tool by the
<command> element's <arg> child element. Any number of <arg> elements can be used.
The <arg> element has several attributes:

<arg> Element Attributes table

Attribute Description

<value> Specifies a parameter passed to the tool. Format is tool-specific; must be
enclosed by single-quotes.

<path> Path to files or classes required by the tool. Must be enclosed by single-
quotes.

<file> Specifies the path to any files required by the tool. Format is tool-specific;
must be enclosed by single-quotes.

Because <arg> elements are processed in the order they are defined, ensured the order
conforms to that expected by the tool.

<command program='${GROOVY_HOME}/bin/groovy'>
<arg value='-cp' />
<arg path='classes:${sdkJar}:lib/commons-codec.jar:

lib/activation-1.1.1.jar:
lib/commons-logging.jar:lib/httpclient-cache.jar:
lib/httpclient.jar:lib/httpcore.jar:
lib/httpmime.jar:lib/javamail-1.4.1.jar' />

Chapter 8: Creating Your Own Plugins

48 Serena® Deployment Automation



<arg file='registerInstancesWithLB.groovy' />
<arg file='${PLUGIN_INPUT_PROPS}' />
<arg file='${PLUGIN_OUTPUT_PROPS}' />

</command>

The <arg file='${PLUGIN_INPUT_PROPS}' />

specifies the location of the tool-supplied properties file.

The <arg file='${PLUGIN_OUTPUT_PROPS}' />

specifies the location of the file that will contain the step-generated properties.

Note: New lines are not supported by the <arg> element and are shown in this
example only for presentation.

Step Post-Processing: <post-processing> Element
When a plugin step's <command> element finishes processing, the step's mandatory
<post-processing> element is executed. The <post-processing> element optionally
sets the step's output properties and error handling. The <post-processing> element can
contain any valid JavaScript script (unlike the <command> element, <post-processing>
scripts must be written in JavaScript). Users can also provide their own scripts when
defining the step in the Deployment Automation editor. Although not required, Serena
recommends that scripts be wrapped in a CDATA element.

You have access to a java.util.Properties variable called properties. The properties
variable has several special properties: exitCode contains the process exit code, and
Status contains the step's status. A Status value of Success means the step completed
successfully.

Another available variable, scanner, can scan the step's output log on the agent and take
actions depending on the results. The scanner variable may use the following public
methods:

• register(String regex, function call) registers a function to be called when
the regular expression is matched.

• addLOI(Integer lineNumber) adds a line to the lines of interest list, which are
highlighted in the Log Viewer; implicitly called whenever scanner matches a line.

• getLinesOfInterest() returns a java.util.List of lines of interest. This can also
be used to remove lines.

• scan() scans the log. Use after all regular expressions are registered.

The post-processing script can examine the step's output log and take actions based on
the result. In the following code fragment, scanner.register() registers a string with a
regular expression engine, then takes an action if the string is found. Once all strings are
registered, it calls scanner.scan() on the step's output log line by line.

![CDATA[
properties.put("Status", "Success");

Integration Guide 49



if (properties.get("exitCode") != 0) {
properties.put("Status", "Failure");

}
else {

scanner.register("(?i)ERROR at line", function(lineNumber, line) {
var errors = properties.get("Error");
if (errors == null) {

errors = new java.util.ArrayList();
}
errors.add(line);
properties.put("Error", errors);
properties.put("Status", "Failure");

});
.
.
.
scanner.scan();
var errors = properties.get("Error");
if (errors == null) {

errors = new java.util.ArrayList();
}
properties.put("Error", errors.toString());

}
]]

You can also use post-processing scripts to set output properties that can then be used in
other steps in the same process. This enables you to design complex workflows.
Reference prior step output properties this way:

${p:stepName/propName}

The upgrade.xml file
To upgrade a plugin, you must create an upgrade XML file. This can be done as
follows:

1. Increment the number of the version attribute of the <identifier> element in
plugin.xml.

2. Create a <migrate> element in upgrade.xml with a to-version attribute containing
the new number.

3. Place the property and step-type elements that match the updated plugin.xml file
within this element, as shown in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<plugin-upgrade

xmlns="http://www.&company;.com/UpgradeXMLSchema_v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<migrate to-version="3">
<migrate-command name="Run SQLPlus script">

<migrate-properties>

Chapter 8: Creating Your Own Plugins

50 Serena® Deployment Automation



<migrate-property name="sqlFiles" old="sqlFile"/>
</migrate-properties>

</migrate-command>
</migrate>
<migrate to-version="4">

<migrate-command name="Run SQLPlus script" />
</migrate>
<migrate to-version="5">

<migrate-command name="Run SQLPlus script" />
</migrate>

</plugin-upgrade>

Of course, you can also make a script-only upgrade, that is, an upgrade that contains
changes to the step's associated scripts and files but does not change plugin.xml. This
mechanism can be useful for plugin development and for minor bug-fixes/updates.

Any upgrade that does not change the step definitions or properties does not need to
provide an upgrade.xml. You can simply load the new version of the plugin using the
Automation Plugins pane in Deployment Automation.

The info.xml File
Use the optional info.xml file to describe the plugin and provide release notes to users.
The file's <release-version> element can be used for version releases.

Integration Guide 51


	Table of Contents
	Chapter 1: Welcome to Serena Deployment Automation
	About This Documentation

	Chapter 2: Integrating with Deployment Automation
	Chapter 3: Integrating with SBM
	Configuring the REST Grid Widgets
	Methods Supporting Composer Mode
	Single Sign-On (SSO) Configuration
	Configuring Tomcat for SSO
	Upgrading Tomcat

	Creating an SSO Authentication Realm
	Sign On Using SSO
	Single Sign Out


	Chapter 4: Integrating with Source Configuration Tools
	Chapter 5: Integrating with Dimensions CM
	Dimensions CM Integration Example
	Dimensions CM Integration Runtime Communication
	Dimensions CM Plugin Installation
	Configuring Dimensions CM Processes in Deployment Automation
	Importing the Dimensions CM Sample Environment
	Importing the Sample Dimensions CM Application
	Configuring the Dimensions CM Application
	Configuring Dimensions CM Component Processes


	Chapter 6: Integrating with ChangeMan ZMF
	ChangeMan ZMF Integration Example
	ChangeMan ZMF Integration Runtime Communication
	Configuring ZMF Connector on the Mainframe
	Installing the ZMF Connector Services
	Configuring the Integration Files
	Loading the ChangeMan ZMF Plugin
	Configuring ChangeMan ZMF Processes in Deployment Automation

	Chapter 7: Integrating with Nolio
	Nolio Integration Example
	Nolio Integration Runtime Communication
	Nolio Plugin Installation
	Configuring Nolio Processes in Deployment Automation
	Importing the Sample Nolio Environment
	Importing the Sample Nolio Application
	Configuring the Nolio Application
	Configuring Nolio Component Processes


	Chapter 8: Creating Your Own Plugins
	Plugin Creation Overview
	The plugin.xml File
	The Header: <header> Element
	The Plugin Steps: <step-type> Element
	Step Properties: <properties> Element
	Step Commands: <command> Element
	Step Post-Processing: <post-processing> Element

	The upgrade.xml file
	The info.xml File



