
Solutions Business Manager
SBM Orchestration Guide

Copyright © 2007–2020 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are as
may be set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice. Except as specifically indicated otherwise, this document contains confidential information and a valid
license is required for possession, use or copying. If this work is provided to the U.S. Government, consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed under vendor's standard commercial license.

Part number: Product version: 11.7.1

Publication date: 2020-02-27

2 Solutions Business Manager (SBM)

Table of Contents
Part 1: Basic Orchestration Topics.. 11

Chapter 1: Orchestration Concepts .. 13

About Orchestration Workflows ... 13

Comparing Synchronous With Asynchronous Orchestration Workflows 14

About Subroutines .. 15

About Working Data .. 18

About Data Mapping .. 19

About Value Assignment... 20

Using Escape Sequences .. 21

About ExtendedField .. 22

About Complex Types and Namespaces .. 23

About Events .. 27

About Application Links and Event Definitions ... 28

About Orchestration Links .. 29

About Web Service Calls and Orchestrations ... 30

About the Step Palette ... 31

About Scope, Compensate, and Throw ... 32

About the Expression Editor ... 32

About Advanced Mapping ... 33

Supported XPath Functions... 33

About SOAP Messages ... 36

Chapter 2: Orchestration User Interface .. 39

Orchestration Link Editor .. 39

Event Editor ... 40

Event with Reply Dialog Box .. 41

New Orchestration Dialog Box .. 42

Event Definitions List .. 43

Event Definition Configuration Dialog Box ... 44

Event Definition Editor ... 45

SBM Orchestration Guide 3

Map Event Definition to Workflow Dialog Box .. 46

Event Definition Property Editor .. 47

General Tab of the Event Definition Property Editor 48

External Event Configuration Dialog Box ... 49

Orchestration Workflow Editor .. 50

Step Palette ... 50

Orchestration Workflow Property Editor ... 50

General Tab of the Orchestration Workflow Property Editor 50

Event Map Tab of the Orchestration Workflow Property Editor 51

Data Mapping Tab of the Orchestration Workflow Property Editor 52

Event Definition Event Mapping Dialog Box ... 53

Map Workflow to Event Definition Dialog Box .. 54

Select Library Type Dialog Box ... 55

Type Library Editor ... 55

Chapter 3: Orchestration Procedures.. 57

Using Data Mapping .. 57

Creating a Practice Process App for Data Mapping .. 58

Creating Private Simple or Library Type Working Data 59

Creating Private Complex Working Data ... 60

Creating Arrays of Working Data .. 61

Setting Default Values ... 63

Setting Source Values Using Suggested Mappings .. 64

Setting Source Element Mappings Manually ... 64

Mapping Identical Structures .. 65

Viewing and Editing Data Element Properties .. 66

Showing the Required Flag ... 67

Clearing Data Mapping... 68

Creating a New Custom Event Definition ... 69

Importing an Event Definition File for a New Custom Event Definition 69

Mapping an Orchestration Workflow to an Event Definition 70

4 Solutions Business Manager (SBM)

Using the Step Palette ... 71

Creating a Practice Process App for Using the Step Palette 72

Using the Calculate Step .. 73

Creating an Empty Orchestration Workflow For the Calculate Step 74

Practicing With the Calculate Step ... 75

Using the Decision Step .. 75

Creating an Empty Orchestration Workflow For the Decision Step 76

Practicing with the Decision Step ... 77

Using the ForEach Step .. 78

Creating an Empty Orchestration Workflow for the ForEach Step 79

Practicing with the ForEach Step ... 80

Using the While Step ... 82

Creating an Empty Orchestration Workflow For the While Step 83

Practicing With the While Step .. 84

Using the Service Step... 85

Creating an Empty Orchestration Workflow For the Service Step 86

Practicing with the Service Step .. 87

Mapping SOAP Header Data ... 89

Using Basic Access Authentication ... 89

Using SOAP Headers to Enable WS-Security .. 90

Using Dynamic Endpoints... 94

Running the StepPalette Process App ... 95

Using the Group Step ... 96

Using the Scope, Throw, and Compensate Steps to Handle Faults From Web
Services .. 96

Tutorial: Creating a Practice Process App for Fault Handling 101

Using the Scope Step .. 104

Tutorial: Creating An Empty Synchronous Orchestration Workflow to Handle
Generic Web Service Faults ... 106

Tutorial: Practicing With the Scope Step to Handle Generic Web Service
Faults... 107

Tutorial: Creating An Empty Synchronous Orchestration Workflow for the Scope
Step to Handle Named Faults .. 110

SBM Orchestration Guide 5

Tutorial: Practicing With the Scope Step to Handle Named Web Service
Faults... 111

Tutorial: Creating an Empty Synchronous Orchestration Workflow for Automatically
Adding Catch Branches for Named Faults .. 114

Tutorial: Practicing Automatically Adding Catch Branches for Named Faults ... 115

Rules for Configuring the Catch Branch ... 119

Using the Throw Step .. 120

Tutorial: Creating an Empty Synchronous Orchestration Workflow for the Throw
Step ... 120

Tutorial: Practicing With the Throw Step ... 121

Using the Compensate Step ... 124

Tutorial: Creating an Empty Asynchronous Orchestration Workflow for the
Compensate Step ... 125

Tutorial: Practicing with the Compensate Step .. 126

Running the Fault Handling Process App .. 129

SerenaSampleTickerService Company Names and Ticker Symbols 130

Tutorial: Running the GenericFaultAWF Project .. 130

Tutorial: Altering the GenericFaultOWF to Return a Web Service Fault............ 131

Tutorial: Running the GenericFaultAWF Project and Invoking the CatchAll
Branch .. 131

Tutorial: Running the NamedFaultAWF Project and Invoking a Catch Branch... 133

Tutorial: Running the ThrowAWF Project ... 134

Tutorial: Running the CompensateAWF Project .. 135

Raising External Events .. 137

Chapter 4: Orchestration Use Cases ... 139

Building Dynamic Arrays ... 139

Use Case: Creating an Array to Use in a Subsequent Service Step 140

Use Case: Populating Custom Fields ... 142

Raising Events from External Products ... 145

Executing a Post Transition Through a Web Service 151

Executing a Copy Transition Through a Web Service 155

Sending Multiple Values in an Event .. 159

6 Solutions Business Manager (SBM)

Use Case: Updating Subtask Items... 163

Mapping Custom Endpoint Information in a Service Call 166

Using Custom Endpoints with RESTCaller .. 166

Running SBM ModScript from an Orchestration ... 168

Chapter 5: Orchestration Best Practices ... 173

Interaction with Application Workflows ... 173

Naming Standards .. 174

Usage .. 175

Event Handling .. 180

Scalability .. 181

Security ... 183

Chapter 6: Orchestration Tutorial .. 185

Step 1: Create an Orchestration .. 185

Step 2: Create a Synchronous Pre-Transition Orchestration Workflow 185

Step 3: Create a Synchronous Post-Transition Orchestration Workflow............... 187

Step 4: Create an Asynchronous Orchestration Workflow 189

Step 5: Validate the Process App.. 191

Step 6: Publish the Process App .. 192

Step 7: Deploy the Process App .. 192

Step 8: Run the Process App ... 193

Orchestration Reminder List .. 193

Chapter 7: Troubleshooting Orchestration Workflows 195

Troubleshooting Orchestrations Using the Validation Results 195

Troubleshooting Orchestrations Using the Common Log Viewer 196

Web Service Faults ... 197

Debugging Orchestration Workflows ... 197

Troubleshooting Orchestrations Using Error Messages 200

Retrying Failed Asynchronous Events .. 201

Limitations on WSDL Files ... 201

Debugging for Development and Support .. 203

SBM Orchestration Guide 7

Chapter 8: Renew Utility .. 205

Running Renew.. 205

Extended Character Handling ... 207

Registry Access Restriction Handling .. 207

Problematic Server Configurations ... 207

Renew Commands .. 208

-h or -help ... 209

-listenvs .. 210

-report ... 211

-cleanupScheduledReports .. 212

-clearCommonLog .. 213

-clearEventLog ... 214

-redeploy .. 215

-restartSSFIndexUpdate ... 218

Part 2: Advanced Orchestration Topics... 219

Chapter 9: Raising External Events ... 221

Events Terminology and Concepts ... 221

Accessing the Advanced Orchestration Package ... 223

Defining an Event Definition .. 223

Creating a Custom Event Definition .. 224

Testing Events from an External Source... 226

Creating Event Client using Apache Axis2 .. 227

Raising an External Event through E-mail .. 228

Creating a Sample E-mail Event SOAP Message .. 229

Configuring Solutions Business Manager to Receive E-Mail Events 231

Upgrading Existing Event Definitions .. 235

Upgrading from SBM R3.X .. 235

Upgrading from SBM 2008 R2.X ... 235

Chapter 10: Calling RESTful Web Services from an Orchestration Workflow 237

Introduction ... 237

RESTCaller Operations .. 238

8 Solutions Business Manager (SBM)

Request Arguments .. 241

Request Responses .. 245

Sending and Receiving HTTP Body Data .. 246

Constructing Working Data XML to Map to JSON... 250

SBM Orchestration Guide 9

10 Solutions Business Manager (SBM)

Part 1: Basic Orchestration Topics

This section contains the following information:

• Chapter 1: Orchestration Concepts [page 13]

• Chapter 2: Orchestration User Interface [page 39]

• Chapter 3: Orchestration Procedures [page 57]

• Chapter 4: Orchestration Use Cases [page 139]

• Chapter 5: Orchestration Best Practices [page 173]

• Chapter 6: Orchestration Tutorial [page 185]

• Chapter 7: Troubleshooting Orchestration Workflows [page 195]

• Chapter 8: Renew Utility [page 205]

SBM Orchestration Guide 11

Part 1: Basic Orchestration Topics

12 Solutions Business Manager (SBM)

Chapter 1: Orchestration Concepts

This section describes the concepts related to orchestrations created in SBM Composer.

• About Orchestration Workflows [page 13]

• About Working Data [page 18]

• About Data Mapping [page 19]

• About Value Assignment [page 20]

• Using Escape Sequences [page 21]

• About ExtendedField [page 22]

• About Complex Types and Namespaces [page 23]

• About Events [page 27]

• About Application Links and Event Definitions [page 28]

• About Orchestration Links [page 29]

• About Web Service Calls and Orchestrations [page 30]

• About the Step Palette [page 31]

• About the Expression Editor [page 32]

• About SOAP Messages [page 36]

About Orchestration Workflows
Orchestrations are created in SBM Composer. They are containers for design elements
such as orchestration workflows.

The primary purpose of an orchestration workflow is to enable the use of Web services for
coordinating the interaction between an application workflow and one or more external
systems. This lets the application workflow present data that can be exchanged and
modified in these external systems. Orchestration workflows can also perform
modifications on the data that flows within the application workflow.

Note: Orchestration workflows are used to automate processes, while
application workflows are generally manual processes for users. Typically, users
never see a process controlled by an orchestration workflow, but they must
interact with an application workflow.

An orchestration workflow is an arrangement of control flow structures, Web services, and
data elements.

• Control flow structures enable an orchestration workflow to make calculations, decide
between two possible sets of instructions, handle exceptions, and so on. In SBM

SBM Orchestration Guide 13

Composer, these structures are known as steps, and they are listed on the Step
Palette of the orchestration workflow editor.

• Web services can be called by means of the Service step, which is also listed on the
Step Palette. Web services let orchestration workflows query and update data in
application workflow items and in external products.

• Data elements include data sent with the event, data expected by or returned by a
Web service, and working data created for temporary use during the execution of an
orchestration workflow. Data elements are mapped in the step Property Editor.

Comparing Synchronous With Asynchronous Orchestration
Workflows
Orchestration workflows can run synchronously or asynchronously. An orchestration
workflow that runs synchronously immediately returns the data to an application.
However, an orchestration workflow that runs asynchronously can keep going,
independently of the application that contains it.

There are situations in which asynchronous (not synchronous) orchestration workflows
should be used. For information, see Usage [page 175].

The following table lists the differences between synchronous and asynchronous
orchestration workflows.

Part 1: Basic Orchestration Topics

14 Solutions Business Manager (SBM)

Synchronous Orchestration
Workflow

Asynchronous Orchestration Workflow

Used when an immediate reply is
required. For example, a synchronous
orchestration workflow might be used
when certain data is needed before a
user can transition to the next step in
the application workflow, or when a
Web service call is expected to return
a quick reply such as a stock quote or
a weather forecast.

Used when an immediate reply is not
required. For example, an asynchronous
orchestration workflow might be used when
the orchestration contains a long-running
program, when the data that is returned by
the Web service is required in a later step in
the application workflow, or when the
orchestration workflow performs some
unrelated task such as sending an e-mail.

Requires the application workflow to
wait for a reply before it can continue.

Does not require the application workflow to
wait for a reply. Runs independently of the
application workflow.

Can be used for transition actions and
for state actions.

Can only be used for transition actions.

The SBM Application Engine invokes
the SBM Orchestration Engine directly.
The orchestration workflow can only
be called by the SBM Application
Engine.

The SBM Application Engine calls the Event
Manager, which then invokes the SBM
Orchestration Engine based on event
mappings in the event definition.

Tip: In SBM Composer, distinct icons let you quickly determine whether an
orchestration workflow is synchronous or asynchronous. In addition, the
orchestration workflow type is shown on the General tab of the orchestration
workflow Property Editor.

In the exercises in Chapter 6: Orchestration Tutorial [page 185], you will create a process
app that contains both synchronous (event with reply) and asynchronous (event without
reply) orchestration workflows. When you run the process app, you will be able to see the
differences in behavior between them.

Note: The Web Service Invocation Timeout setting in the Database tab in
SBM System Administrator is used to control the timeout for synchronous
orchestrations. The timeout value that you specify controls the amount of time
that the system will wait for an synchronous orchestration to complete. Prior to
SBM 10.1.3, the SBM Orchestration Engine would timeout the response from a
synchronous orchestration at sixty seconds.

About Subroutines
A subroutine is a workflow that you can call from multiple orchestration workflows.
Subroutines can contain any orchestration elements, such as the Calculate step, and are
useful when your orchestrations contain common actions. Once you have created a
subroutine, you can use it by dragging it from the Step Palette into an orchestration
workflow.

You can define inputs for a subroutine workflow, similar to defining Working Data, and you
can define outputs for a subroutine in the Data Mapping tab of the End step.

SBM Orchestration Guide 15

Like Web services, you can then map these inputs within the calling orchestration to the
appropriate source elements. You can use outputs in mapping and expressions of other
steps.

Note the following points about subroutines:

• Subroutines can be used in both asynchronous and synchronous orchestrations.

• You can define as many subroutines as you want and nest them as needed.

• A subroutine cannot call itself either directly or indirectly via another subroutine.

Example
This simple example demonstrates how to create a subroutine that appends the text "-
subroutine" to a field.

1. Create an application process app and add a new text field called Text1.

2. In the application workflow, create a quick transition called Test Subroutine that
starts and ends at the New state.

3. Add an action to the Test Subroutine transition that does the following:

• Calls a new synchronous orchestration before the transition occurs

• Includes Text1 as a field that is used and returned by the event

4. In app explorer, right-click Orchestration Workflows and select Add New
Subroutine.

5. Change the default name to AppendTextSubroutine.

6. From the Step Palette, drag a Calculate step to the subroutine.

7. Select the subroutine workflow. For the data mapping inputs, add the string
InText1.

8. Select the End step. For the data mapping outputs, add the string OutText1.

9. Select the Calculate step, and create a new assignment with the following values:

• Target: OutText1

• Expression: CONCAT(InText1, "-subroutine")

10. Select the orchestration you created in step 2.

11. Drag the new subroutine step AppendTextSubroutine to the orchestration.

Part 1: Basic Orchestration Topics

16 Solutions Business Manager (SBM)

12. Select the subroutine step and map the InText1 input to the following source:

13. Select the End step and map the Text1 output to the following source:

SBM Orchestration Guide 17

14. Save and deploy the process app.

To test in SBM Work Center, submit a new item and then click the Test Subroutine
button. The Text1 field should display the following:

About Working Data
You can see the working data hierarchy on the Data Mapping tab of the orchestration
workflow Property Editor. Because the working data is available throughout the
orchestration workflow, it is displayed when no specific step is selected.

Working data is composed of individual data elements that you create and delete. The
possible types are:

• Private Simple: A type such as Integer or String.

• Library Type: A system type such as User, Field, or Privilege.

• Private Complex: A structure made of some combination of the other two types. This
type has child data elements.

Working data is used in orchestration workflows. For example, you might want to
temporarily store the value returned by a Web service or a loop counter variable. As with
the inputs to Web services, you can define source elements and default values for working
data.

Important: Working data elements cannot be named input or output.This
includes any variations in capitalization such as Input or Output.

Note: For string type data elements, you must use escape sequences to add a
new line, insert a tab, enter a carriage return, or type a literal backslash. See
Using Escape Sequences [page 21] for details.

Resetting Data
For loops using the For Each or While step, the Web service and subroutine inputs retain
the data for all transactions. In some cases, this caching may cause issues for subsequent
loops. To reset the data collected in these inputs, first use one of the following methods to
define an empty variable:

• From the data mapping inputs of the Web service or subroutine, copy the input
structure (or its parts) that you want to reset, and paste it in the working data.

• Likewise, for output data, turn on the properties mode and copy the output structure
(or its parts) that you want to reset, and paste it in the working data.

Part 1: Basic Orchestration Topics

18 Solutions Business Manager (SBM)

• To reset an array item, copy and paste it to the working data. In the properties
mode, change IsUnbounded to False.

• In the Web service, identify the named type of the input that you want to reset. In
the working data, create a variable that matches the named type from the type
library.

Once you have defined the empty variable, assign it to the corresponding part of the input
data, just prior to initiating the loop via the Calculate step for each iteration (inside of the
loop).

About Data Mapping
As you create orchestrations in SBM Composer, you find that you need to pass data to
Web services, use the return values from Web services, or store data values in temporary
locations.

In SBM Composer, you use data mapping to arrange the inputs and outputs of Web
services. Data Mapping is one of the tabs that is displayed in the orchestration workflow
Property Editor when you select an orchestration workflow in App Explorer or when you
select a Service step in an orchestration workflow. (As with all Property Editor tabs, the
content of the Data Mapping tab depends on what is selected.) When you define inputs,
you can either use the mappings suggested by SBM Composer or specify other mappings.

You can do any of the following tasks from the Data Mapping tab:

SBM Orchestration Guide 19

• Choose an input suggested by SBM Composer (suggested mappings).

• Open the Select a Source popup, in which you select an input from a hierarchical
list of choices.

Note: The outputs from a Web service are available as source elements
only for subsequent items in the orchestration workflow.

• Display advanced options with which you map incompatible types or multiple items in
the Select a Source popup.

Note: If incompatible types are mapped, the mapping appears in a
warning color (dark blue) preceded by a ! character.

• Use data that accompanies the event that triggered the orchestration workflow.

• Clear mappings for the selected item.

• Set the display of data elements to show a red highlight on the icons of required
items.

• Switch between mapping mode and properties mode. In properties mode, you can
view and edit the lowest-level details for a working data element or step input,
including its namespace and type.

• Initialize values for optional elements and attributes in complex types. For more
information, see Element and Attribute Mapping [page 23].

Note:

• For string type data elements, you must use escape sequences to add a
new line, insert a tab, enter a carriage return, or type a literal backslash.
See Using Escape Sequences [page 21] for details.

• Elements on the Data Mapping tab that have a lock icon on them are
external types that are defined by a Web service; they are not defined in
the process app. These external types are shown in the Type Library Editor
[page 55]. You cannot change the type of locked elements or change their
child elements.

About Value Assignment
Values are held in variables that exist for the entire execution of an orchestration
workflow. These variables include the following:

• Working data variables

• The asynchronous orchestration workflow EventNotice or the synchronous
orchestration workflow EventNoticeWithReply and
EventNoticeWithReplyResponse

• Request and response messages for each Service step in the workflow

A working data value can be assigned on the Data Mapping tab in the orchestration
workflow Property Editor. Alternatively, a Calculate step can be used to assign a value to
a working data variable.

Part 1: Basic Orchestration Topics

20 Solutions Business Manager (SBM)

The EventNotice or EventNoticeWithReply variables will contain the values sent when
the orchestration workflow is invoked, but can be overwritten by Calculate steps. The
EventNoticeWithReplyResponse can be assigned using the Data Mapping tab in the
End step Property Editor.

A Service step input variable can be assigned on the Data Mapping tab for the step or
by a Calculate step that specifies the input to a Service step as its target. A Service
step output variable is normally assigned by the Service step on its return. However, a
Calculate step can be used to set or override a value in the Service step output variable.

The Data Mapping tab includes a Source elements column, where values are mapped
from other variables. It also includes a Default value column, where a constant value
can be specified.

Values are assigned to Service steps as follows:

1. When an orchestration workflow is invoked, its first action is to allocate the event
variables, the working data, and the Service step input and output message
variables. It does this by assigning any default values that have been specified. Its
next action is to perform mappings to working data, overwriting any default values
with the respective mapped values.

2. When the workflow reaches a Calculate step, values assigned by that step replace
either the initial values as described above or the values set by previous Calculate
steps.

3. When the workflow reaches a Service step with mappings, the mappings replace
either the initial values as described above or the values set by previous Calculate
steps.

Note: An error will result if a source for a Service step mapping is not
initialized. To prevent this, make sure you either provide a default value for
mapped working data or use a Calculate step to provide the value.

A data element with a complex type has a structure that includes a parent element and
child elements. When you map a parent element to a source parent element, its child
elements are replaced by a copy of the source child elements. Because the mappings copy
the source data structure, you can explicitly assign different values to the child elements
in the new structure without changing values in the parent. For details about complex
types, see About Complex Types and Namespaces [page 23].

Using Escape Sequences
Escape sequences are characters that change the way subsequent characters in a string
are interpreted by a program. The following table lists escape sequences are available
when you specify default values for string type data elements in working data or Service
step data mapping. (The numeric value of the characters encoded by each escape
sequence is included.)

Name Escape Sequence ASCII Value

Tab \t 9

Newline \n 10

SBM Orchestration Guide 21

Name Escape Sequence ASCII Value

Carriage return \r 13

Backslash \\ 92

For example:

• To add a new line, type \n before you type the characters in the new line. For
example, First line text\nSecond line text.

• To type a literal backslash, such as in a directory path, type a double backslash. For
example, C:\\Program Files\\Serena\\SBM\\Composer.

The escape sequence characters will be visible in the Default value column on the Data
Mapping tab of the workflow or step Property Editor, but the text will be represented
correctly at runtime.

Note: You cannot use a backslash outside the context of an escape sequence;
doing so will generate an error message.

About ExtendedField
The ExtendedField parameter is available on some operations in SBM Web services. The
extendedField[] extension provides a way to interact with the various custom fields
defined in an application. You can specify something that identifies the field (for example,
its name) and a value for the field by mapping to a value or by specifying a default value.

The following illustration shows the ExtendedField input in a Service step that uses the
"TransitionItem" operation. It creates an update record for the GEN_PENDING_BASELINE
field and sets its value to the item ID.

ExtendedField can also be used in Calculate step expressions. The following illustration
shows a Calculate step that takes the internal value of the GEN_SBM_REC_ID field and
stores it in the ActiveRecId working data element.

Part 1: Basic Orchestration Topics

22 Solutions Business Manager (SBM)

Note: It is recommended that you create the array elements directly in the
Service steps and assign values to them directly, instead of trying to
dynamically create them.

About Complex Types and Namespaces
Complex types differ from simple types in that complex types can have child data
elements and attributes, while simple types cannot. Complex types can be named or
anonymous. All types except anonymous types are identified by their name and target
namespace. Anonymous complex types do not have names.

You can view the name and namespace for a data element by switching from mapping
mode to properties mode on the Data Mapping tab in the Property Editor for an
orchestration workflow or Service step. To switch modes, click the vertical bar near the
right side of the tab.

You can use the Select Library Type Dialog Box [page 55] to associate a named type with
a data element. This dialog box contains the named types defined by the Web services
that were imported into the orchestration workflow. In the orchestration workflow
Property Editor, the NamedType, NamedType Namespace, and Namespace are read-
only. You cannot manually add a child element to a data element with a named type, even
if it is a complex type.

Note the following points about anonymous complex types:

• The default target namespace is http://workflow name.

• Unless it is changed explicitly, a child data element continues to have the default
namespace, even if the namespace of its parent data element is changed explicitly.

• If you want a child data element to store data from a Web service response, its
namespace must be the same as the namespace in the Web service schema. In
other words, it must be the same as the targetNamespace of the schema element
defined in your WSDL file. The schema element must contain the complex type from
which you are trying to map.

Element and Attribute Mapping
In an XML schema, by default, elements are required and attributes are optional. If an
element or attribute is optional, no element or attribute is created; therefore, the element
or attribute will have no value. If you need to map that element or attribute, you must
initialize it with a value by doing one of the following:

• Provide a default value for it in the working data for the orchestration workflow.

• Use a Calculate step to assign it a value.

• Select a source element as an input value. (See About Data Mapping [page 19] for
details.)

SBM Orchestration Guide 23

SBM Composer does not distinguish elements from attributes; both are presented as data
elements in the Data Mapping tab of an orchestration workflow or Service step Property
Editor. To see elements and attributes, refer to the original schema definition, which is
imported into SBM Composer as a service WSDL file. In this file, an attribute is declared
as part of a complex type. The use attribute is used to specify that it is required. For
example:

<xs:attribute name="myattr" type="xs.string" use="required"/>

If an attribute is contained within a named type, the attributes will be presented as child
data elements on the Data Mapping tab, and you can initialize them as described above.
However, if an attribute is contained within an anonymous type, it will not appear on the
Data Mapping tab, and you will not be able to create it there as a child of a data
element. To work around this situation, do the following:

1. Open the service WSDL file to edit it.

2. Create a named type in the appropriate namespace.

3. Create the attribute on the appropriate element.

4. Reimport the WSDL file into SBM Composer.

5. Initialize the attribute using one of the three methods listed above.

Example: Named Type
A complex data element associated with a named type inherits its namespace and children
data elements from the named type. For example, suppose you do the following:

1. Add the sbmappservices72 Web service to the process app. To do so, right-click
the Web Services heading in App Explorer, and select Add New Service. In the
Web Service Configuration dialog box that opens, navigate to the
sbmappservices72.wsdl file, and then click OK. This file is in the
installDir\Application Engine\webservices\bin directory.

2. In the orchestration workflow Property Editor, select the Data Mapping tab.

3. Right-click the WorkingData step input, select Add New, and then select Select
from Libray Type.

4. In the Select Library Type Dialog Box [page 55] that opens, find and select TTItem)
and then click OK.

As shown in the following illustration, the Namespace value is inherited from the
NamedType Namespace value.

Part 1: Basic Orchestration Topics

24 Solutions Business Manager (SBM)

Example: Anonymous Type
For a complex data element with an anonymous type, you must create the structure
manually and specify the correct namespace. You get the information you need from the
WSDL file for the Web service.

The following illustration of shows part of a WSDL file. This file includes the target
namespace (urn:SerenaSampleTickerService) and some of the elements that can be
added to the structure (GetBuyRating, GetBuyRatingResponse, GetTickerSymbol).

Suppose you want to store the GetBuyRatingResponse value and use it later in the
orchestration workflow. You would perform the following steps:

1. Add the SerenaSampleTickerService Web service to the process app. To do so,
right-click the Web Services heading in App Explorer, and then select Add New
Service. In the Web Service Configuration dialog box that opens, in the WSDL
box, type http://serverName:8085/Ticker/services/SerenaSampleTickerService?wsdl and
then click OK.

2. Add a Service step to the orchestration workflow. On the General tab in the
Property Editor for the step, select SerenaSampleTickerService from the Service
list, and select GetBuyRating from the Operation list.

SBM Orchestration Guide 25

3. Add a new data element (complex type) to the WorkingData node and name it
GetBuyRatingResponse.

The default namespace is http://MyOrchWorkflow (the name of the orchestration
workflow).

4. Change the namespace to the targetNamespace shown in the WSDL file
(urn:SerenaSampleTickerService). To do this, simply copy and paste the
namespace into the Namespace box.

5. Add a child data element and name it GetBuyRatingResult.

The namespace was inherited from the parent data element. The namespace
matches the targetNamespace in the WSDL file.

Important: If the namespace does not match the targetNamespace in the
WSDL file, you must change it manually.

Part 1: Basic Orchestration Topics

26 Solutions Business Manager (SBM)

About Events
An event signals a meaningful change from an SBM application or an external product. For
example:

• An issue defect management application in SBM raises an event every time a user
submits a new defect.

• A software build product raises an event every time a build completes.

• Salesforce.com raises an event every time a potential customer is initially contacted.

Any SBM application or external product that is capable of calling a Web service can raise
events in SBM. After an event is raised, the Event Manager receives it, and then calls the
SBM Orchestration Engine to execute the asynchronous orchestration workflow linked to
the event. The orchestration workflow could update an SBM item, create a new SBM item,
and so on.

The orchestration workflow provides the integration point between an SBM application and
an external product, or two SBM applications in the same process app or in different
process apps. In the first case, the orchestration workflow can be initiated from either the
application or the external product. In the second case, the orchestration workflow can be
initiated from either application. Something happens in one that raises an event, and the
orchestration workflow runs in response to the event and updates the other.

An event can be raised in the following ways:

• From the SBM Application Engine by creating an asynchronous orchestration
workflow action on a transition in an application workflow. You use the Action
Wizard to create this type of event. You can raise the application's standard Event
without Reply orchestration link ("the local event") to invoke orchestration
workflows that were defined for use with the application, or use an imported
orchestration link ("external event") to invoke any other orchestration workflow. For
more information, see the action wizard information in the SBM Composer Guide.

Note: When there are multiple asynchronous orchestration actions on the
same transition, only one event of each event type is raised. Events start
orchestration workflows that will run simultaneously depending on
available resources, so the ordering of event actions on the Actions tab
has no effect on the execution order of the orchestration workflows. See
the "Considerations for Using Actions" topic in the SBM Composer Guide for
details.

• From an external product using any of the following:

▪ Event Manager Web service API

▪ E-mail message

The following diagram illustrates the way an event is processed.

SBM Orchestration Guide 27

Remember: Events are relevant for asynchronous orchestration workflows
only. For information about the differences between asynchronous and
synchronous orchestration workflows, see Comparing Synchronous With
Asynchronous Orchestration Workflows [page 14].

In addition to initiating an orchestration workflow, an event sends data to it.

• For an event raised from an SBM application, the mappings are implicit, so you do
not need to map application data into the event. You can select which fields from the
primary application table to be sent with the event, and can define additional data to
be sent with the event. To do this, click Event without Reply under the
Orchestration Links heading in App Explorer. See About Orchestration Links [page
29] for more information.

• For an event that is not raised by the primary application, you must map application
data into the event. In this case, you import an existing event definition or create a
new custom event definition using SBM Composer. See About Application Links and
Event Definitions [page 28] and External Events [page 30] for more information.

In certain external integrations with SBM, errors are handled in a limited way and cannot
be automatically retried. You can manually retry these events in SBM Application
Repository. For more information, see Retrying Failed Asynchronous Events [page 201].

About Application Links and Event Definitions
An event definition is a specific format that lets SBM applications and external products
declare the events they can raise, and lets receiving applications understand these events
so they can respond to them. Event definitions are listed under the Application Links
heading in App Explorer.

An event definition includes data specific to the application or external product, and the
following event values: EventType, ObjectType, Product, ProductVersion, and
ProductInstance. SBM uses the event definition to construct an event map that is
deployed to the Event Manager. At runtime, the Event Manager receives the event, and if

Part 1: Basic Orchestration Topics

28 Solutions Business Manager (SBM)

the event is in a deployed event map, it invokes the associated asynchronous
orchestration workflow, passing the event definition data to the workflow.

Important: Orchestration links, not event definitions, are used to define events
for synchronous orchestration workflows. For more information, see About
Orchestration Links [page 29].

Event definitions can be created in two ways:

• Automatic: If you use the Action Wizard to create a new orchestration, a new
event definition is created under the Application Links heading. This event
definition is designed to be used with the Event without Reply that already exists
in the application under the Orchestration Links heading. The application link lets
the orchestration know what the incoming event will look like; the orchestration link
lets the application generate an event that looks like what the orchestration is
expecting. For more information, see the orchestration workflow information in the
"Action Wizard" topics in the SBM Composer Guide.

• Manual: You can create a new custom event definition or import an existing one. For
instructions, see Creating a New Custom Event Definition [page 69] and Importing
an Event Definition File for a New Custom Event Definition [page 69]. You typically
use custom event definitions to do the following:

▪ Export an event definition (.mtd) or Web Service Definition Language (.wsdl) file
from an orchestration and then import the file into any application that needs to
raise the event.

See the "Calling an Orchestration Workflow from Any Application" tutorial in the
SBM Composer Guide for instructions.

▪ Export an .mtd or .wsdl file from an orchestration and then use it to raise an
event from an external product. After you export this file, consult the
documentation for the external product to determine how to call an operation on
the Web service to raise the event.

See Raising Events from External Products [page 145] for instructions.

About Orchestration Links
An orchestration link defines the data that is sent to an orchestration workflow when a
transition is executed or a state is reached in an application workflow. The values from the
primary table fields that you select and any additional data items you define are passed to
the orchestration workflow that you select when you create the orchestration link. For
synchronous orchestration workflows, you also select primary table fields whose values
should be returned from the orchestration workflow.

Remember: Because changes to an orchestration link propagate to the inputs
and outputs of an orchestration workflow, the orchestration link is the primary
area in which the inputs and outputs are defined.

Orchestration links are displayed directly under the Orchestration Links heading in App
Explorer.

SBM Orchestration Guide 29

• Event without Reply is added automatically. This defines event data for
asynchronous orchestration workflows that are called from an application workflow
when a transition is executed. This orchestration link can be exported and then
imported into other orchestrations so they can handle the events that the application
raises. These orchestrations do not have to be in the same process app.

Important: If you want the "Event without Reply" to be used by an
asynchronous orchestration workflow in another process app, lock it before
you export it, using the Event Editor [page 40]. The definition includes an
event type name (constructed from the application, state, and transition
names) and the extension data fields that will be sent with the event. If
you lock the definition, it becomes portable, because these names will not
change in the event definition, even if the corresponding field names
change in the original process app.

• Other orchestration links are for synchronous orchestration workflows that are called
from an application workflow when a transition is executed or a state is reached.
These orchestration links are typically added when you create a new synchronous
workflow through the Action Wizard. For more information, see the "Action Wizard"
information in the SBM Composer Guide.

External Events
The orchestration links described above define inputs based on primary table fields in the
calling application. Another use case is when an orchestration workflow needs to be called
by one or more applications with different primary tables. This orchestration workflow
could be defined as an interface to a particular application or as an interface to an
external product.

To handle this use case, first export the "Event without Reply" from the application or
export the event definition from the orchestration. Then import what you exported into
the calling application. These orchestration links are displayed under the External Events
subheading in App Explorer. In the Action Wizard, you map the orchestration inputs to
the primary table fields of the calling application.

For instructions, see the "Calling an Orchestration Workflow from Any Application" tutorial
in the SBM Composer Guide.

About Web Service Calls and Orchestrations
SBM automatically passes security tokens for automated processes such as SBM Web
service calls and orchestration workflows. The credentials of the user that invokes the
orchestration workflow are automatically supplied to all of the SBM Application Engine
Web service calls that are made throughout the orchestration workflow at runtime. This
means that the orchestration workflow is invoked under the control of the user's
privileges, and the user's name appears in the change history for the affected item.

Restriction: An external event could have a security token or a user credential
that could be used to obtain a security token, or be anonymous. When the
external event is anonymous, there is no security token for the orchestration to
pass to the SBM Web services, so authentication credentials must be hard coded
in the auth element in the orchestration workflow.

The dynamic relationship between the orchestration workflow and the user performing the
change not only grants tighter privilege control, but also provides a more detailed audit
trail in the affected item's change history. For example, when Bill executes a transition

Part 1: Basic Orchestration Topics

30 Solutions Business Manager (SBM)

that invokes an orchestration workflow containing the TransitionItem Web service
operation, the update is performed by Bill's user account under the control of his item
privileges. His user credentials are automatically supplied by his security token to the
auth element for this operation; therefore, the administrator does not need to hard code
user credentials in the orchestration workflow ahead of time. If Bill does not have
privileges to update the associated item, the TransitionItem operation will fail. If Bill
does have these privileges, after the transition completes, Bill's user name appears in the
change history of the updated item.

An asynchronous orchestration workflow is only executed after the transition that invoked
it finishes. For example, suppose a user transitions an item from the New state to the
Assigned state. The asynchronous orchestration workflow is executed after the item is in
the Assigned state. If the user who initiated the transition no longer owns the item, or
does not have the privilege to update items in the Assigned state, the orchestration
workflow will fail.

There are two ways to handle or prevent these failures:

• In the application workflow, include an intermediate state that waits for the
asynchronous orchestration workflow to finish. When it finishes, the item moves to
the intermediate state, which can be used to handle failures. For example, this state
could have a "return" transition that an administrator can use to move the item back
to the original state or to an error state for reprocessing. The original user needs
privileges to transition the item to any successful state but should not have privileges
to open items that are in the intermediate state or execute the "return" transition.

• Make sure the user performing the transition has privileges to update items in the
affected states.

CAUTION:

Credentials you hard code in the auth element will override security token
credentials, so make sure the user has the appropriate privileges for the action
that the Web service operation will take. Conversely, if you remove the
credentials from the auth element, make sure the user who runs the
orchestration workflow has sufficient item privileges in SBM.

About the Step Palette
One of the things that distinguishes the use of Web services in orchestrations, rather than
in applications, is the availability of control flow structures. These control flow structures
make it possible to design an orchestration workflow that can branch based on a value,
make calculations based on returned results, iterate through a set of data, and perform
many other tasks.

The control flow structures are available on the area known as the Step Palette. Each
item in the Step Palette is known as a step.

The following table describes the steps on the Step Palette.

Step Purpose

Calculate Performs a calculation or sets values on data.

Decision Inserts branches into the workflow.

SBM Orchestration Guide 31

Step Purpose

ForEach Cycles through all members of a complex data element.

While Repeats during the time a certain condition is true.

Service Inserts a Web service into the workflow.

Group Creates a structure to organize steps logically.

Scope Creates a structure to handle faults that occur during the execution of a
Web service.

Compensate Defines steps that can compensate for a problem.

Throw Defines steps to throw an exception.

About Scope, Compensate, and Throw
The Scope, Compensate, and Throw steps in the Step Palette deserve special
mention. These steps are related and are used to create a structure for handling faults
that occur during Web-service execution.

• The Scope step makes it possible to have a FaultHandler and a
CompensationHandler.

• The Compensate step is designed to work with a CompensationHandler or
FaultHandler to roll back actions from an entire scope. You can use the Compensate
step in one of two ways:

▪ If you name a scope explicitly in the step Property Editor, then only the named
scope's CompensationHandler is invoked.

▪ If you do not name a scope in the step Property Editor, then every
CompensationHandler for scopes enclosed immediately within the scope of the
Compensate step is invoked, in reverse order of execution.

• The Throw step is used inside a nested scope to pass the exception or fault to the
outer scope.

Note: The values of working data are not affected by scopes. Creating a scope
does not create an area where working data is only visible within that scope.
Working data is global to an orchestration and is visible across all scopes.

Note: For detailed information about these steps, see Using the Scope, Throw,
and Compensate Steps to Handle Faults From Web Services [page 96].

About the Expression Editor
Many of the steps on the Step Palette include areas that let you define an arithmetic or
logical expression. SBM Composer contains a feature to help you write these expressions.
This feature is called the expression editor.

Part 1: Basic Orchestration Topics

32 Solutions Business Manager (SBM)

Expressions might require a long string such as "EventNotice.Extension.ActiveInactive." To
reduce typing errors, the expression editor helps you complete these long strings.

The expression editor behaves similarly to the feature in word processors that suggests
potential word choices when you begin typing. The expression editor tries to fill in the
expression based on what it knows about the hierarchies of working data, Web services,
and process app events.

You can see the expression editor by creating a Calculate step in an orchestration
workflow and then typing a letter into either the Target or Expression section on the
Options tab of the step Property Editor. The expression editor tries to match that letter,
showing you all available choices.

When you get to the end of a structure element, such as EventNotice, press the period
key. The expression editor shows you the choices available in the next level of the
hierarchy.

The expression editor also recognizes the XPath functions that are available.

For more information, see the following topics:

Using Data Mapping [page 57]

Using the Step Palette [page 71]

Supported XPath Functions [page 33]

About Advanced Mapping
By default, the expression editor for the Calculate, ForEach, While, and Decision/
Branch steps provides a list of standard choices that make sense for typical data flow. In
more advanced use cases, you might want the expression editor to display a list of all
available choices.

To display a complete list, select the Advanced mapping checkbox on the Options tab
of any of these steps. For each expression, the list will display additional choices as shown
below:

• Target expression in the Calculate step: Workflow inputs and step outputs

• Source expression in the Calculate and ForEach steps: Step inputs and workflow
outputs

• Rule expression in the Decision/Branch and While steps: Step inputs and
workflow outputs

Use these choices with caution, as they may lead to unpredictable results.

Supported XPath Functions
Some of the steps in the Step Palette let you define expressions for a calculation or
value assignment. In these expressions, you can use any of the functions or operators
that are available in the step Property Editor.

The functions in the Functions list in the step Property Editor are XPath functions. Only
XPath 1.0 functions are currently supported. XPath 2.0 functions are not supported.

Note: Some function names in SBM Composer differ from the names in the
XPath standard. For example, NORMALIZESPACE() is the SBM Composer name for
the normalize-space() XPath function.

SBM Orchestration Guide 33

The following table describes the supported XPath 1.0 functions.

Function Description

BOOLEAN() Returns a Boolean value for a number, string, or array.
Numbers that are not equal to 0 and strings that are not null
or empty always return true.
For example, BOOLEAN(0) returns false, and BOOLEAN("false")
returns true.

CEILING() Returns the smallest integer that is greater than or equal to
the number argument.

For example, CEILING(2.35) returns 3.

CONCAT() Returns the concatenation of two or more strings.

For example, CONCAT("day","light") returns "daylight".

CONTAINS() Returns true if the first string contains the second string.
Otherwise, returns false.
For example, CONTAINS("XPath","Path") returns true.

COUNT() Returns the number of elements in an array.

For example, suppose you have a Files[] array under an
Issues data element. Each array element in the array stores a
file name. COUNT(Issues.Files) returns 5, because there are five
array elements in the array.

FLOOR() Returns the largest integer that is less than or equal to the
number argument.

For example, FLOOR(2.35) returns 2.

LAST() Returns the last element in an array.

For example, suppose you have a Testers[] array under a
Users data element. Each array element in the array stores
the name of a software tester. Users.Testers[LAST()] returns
Jim Wilson, because his name was stored in the last array
element.

NORMALIZESPACE() Returns an argument string after removing leading and trailing
spaces and replacing each sequence of spaces with a single
space.

For example, NORMALIZESPACE(" 555-1212 ") returns "555-1212".

Part 1: Basic Orchestration Topics

34 Solutions Business Manager (SBM)

Function Description

NOT() Reduces an argument to a Boolean expression, and then
returns the opposite value.

For example, NOT(false()) returns true.

NUMBER() Returns the numeric value of an argument. The argument can
be a Boolean, string, or array.

For example, NUMBER("500") returns 500.

POSITION() Returns the index position of an array that is being processed.

For example, testcase[POSITION()<=2] selects the first two test
cases.

ROUND() Returns a number that is the nearest integer to the specified
value. If there are two such numbers, the greater one is
returned.

For example, ROUND(5.24) returns 5, and ROUND(6.5) returns 7.

STARTSWITH() Returns true if the first string starts with the second string.
Otherwise, returns false.
For example, STARTSWITH("XPath","XP") returns true.

STRING() Returns the string value for a Boolean or number.

For example, STRING(1117) returns "1117".

STRINGLENGTH() Returns the number of characters in a string.

For example, STRINGLENGTH("HOLIDAY") returns 7.

SUBSTRING() Returns a substring from the starting position to the provided
length. The index of the first character of the string to be
operated on is 1. The three arguments are the string to be
operated on, the starting position, and the length. If the length
(the third argument) is not provided, returns the substring
from the starting position to the ending position.

For example, SUBSTRING("Salesperson",1,3) returns "Sal", and
SUBSTRING("Salesperson",4) returns "esperson".

SBM Orchestration Guide 35

Function Description

SUBSTRINGAFTER() Returns the remaining characters in the first string after the
second string occurs in it.

If the first string does not contain the second string, an empty
string is returned.

For example, SUBSTRINGAFTER("555-1212","-") returns "1212".

SUBSTRINGBEFORE() Returns the characters in the first string before the second
string occurs in it.

If the first string does not contain the second string, an empty
string is returned.

For example, SUBSTRINGBEFORE("555-1212","-") returns "555".

SUM() Returns the sum of the numeric values of each element in the
array.

For example, suppose you have a SalesTax[] array under a
Taxes data element. Each array element in the array stores
the sales tax amount from a transaction. SUM(Taxes.SalesTax)
returns 100.00, because there are four array elements in the
array, with values of 20, 40, 25, and 15 respectively.

TRANSLATE() Returns the first string with occurrences of characters in the
second string replaced by the character at the corresponding
position in the third string.

For example, TRANSLATE("bat","abc","ABC") returns "BAt".

About SOAP Messages
Orchestrations communicate with Web services by sending and receiving SOAP messages.
SOAP messages are XML (eXtensible Markup Language) documents that are formatted
according to the rules of the SOAP specification. (See the World Wide Web Consortium
Web site at http://www.w3.org for more information about the SOAP specification.)

SOAP Envelope
A SOAP message consists of a SOAP envelope. The SOAP envelope contains an optional
SOAP Header and a required SOAP Body.

SOAP Header
The optional SOAP Header includes application-specific information about how the SOAP
message is to be processed. Each Header contains one or more header blocks, which can
include message routing and delivery instructions, payment information, authentication
credentials, or any other information that relates to processing the data in the SOAP
Body.

Part 1: Basic Orchestration Topics

36 Solutions Business Manager (SBM)

http://www.w3.org

The SOAP Header can also contain a headerfault message element that usually relates to
Header-processing errors.

SOAP Body
The required SOAP Body contains the actual message to be processed by the ultimate
endpoint. The Body may contain an XML element such as employeeNumber, or an element
that maps to the arguments or parameters in a programming method or function.

SOAP Fault
The SOAP Body can also contain an optional SOAP fault, which is used to carry error and
status information about a SOAP message. If an error occurs during the processing of a
request, a response SOAP message is returned to the sender that contains the SOAP fault
in the Body of the message.

SBM Orchestration Guide 37

Part 1: Basic Orchestration Topics

38 Solutions Business Manager (SBM)

Chapter 2: Orchestration User Interface

This section describes the following orchestration-related dialog boxes, editors, and
Property Editors.

• Orchestration Link Editor [page 39]

• New Orchestration Dialog Box [page 42]

• Event Definitions List [page 43]

• Event Definition Configuration Dialog Box [page 44]

• Event Definition Editor [page 45]

• External Event Configuration Dialog Box [page 49]

• Orchestration Workflow Editor [page 50]

• Type Library Editor [page 55]

Orchestration Link Editor
This editor is displayed when you select an existing orchestration link (not the Event
without Reply item) under the Orchestration Links heading in App Explorer. For
information about orchestration links, see About Orchestration Links [page 29].

Important: The Event item under the Orchestration Links heading is used
for asynchronous orchestration workflows, and the other items are used for
synchronous orchestration workflows. For information about the Event without
Reply item, see About Events [page 27] and Event Editor [page 40].

Element Description

Name The name of the orchestration link. This name is displayed under the
Orchestration Links heading in App Explorer.

Description An optional description of the orchestration link.

Orchestration The orchestration that contains the orchestration workflow that is
invoked when the action corresponding to this orchestration link is
executed. For convenience, you can click the name of the orchestration
to view its editor. Click in the Quick Access Toolbar to return to the
current view of the orchestration link editor.

SBM Orchestration Guide 39

Element Description

Workflow The orchestration workflow that is invoked when the action
corresponding to this orchestration link is executed. For convenience,
you can click the name of the orchestration workflow to view it. Click

in the Quick Access Toolbar to return to the current view of the
orchestration link editor.

Fields used
by event

The fields from the primary table that are passed as inputs to the
linked orchestration workflow. If you need data that is not listed,
define it as Additional data used by event.

Fields
returned by
event

The fields in the primary table that are set by the results of the
synchronous orchestration workflow.

Additional
data used by
event

Additional data items that are passed as inputs to the linked
orchestration workflow.

New Adds an item to the list of additional data items.

Delete Removes the selected data item from the list.

Move up,
Move down

Moves the selected data item higher or lower in the list.

Event Editor
The event editor is displayed when you select Event without Reply under the
Orchestration Links heading in App Explorer. This editor describes field values and
additional data that is sent with events raised during application workflow transitions.
These events are raised when a transition action is created that invokes an asynchronous
orchestration workflow (one created in the Action Wizard with the continue executing
(asynchronous) option). The event corresponds to an event definition in the called
orchestration. For information about events and event definitions, see About Events [page
27] and About Application Links and Event Definitions [page 28]. For information about
the Action Wizard, see the SBM Composer Guide.

Note: The event is shown as the Event definition source on the General Tab
of the Event Definition Property Editor [page 48] for the event definition that is
automatically created when you use the Action Wizard to create an
asynchronous orchestration workflow.

Note: The fields and additional data that you specify in this editor appear as
Custom data elements in the Event Definition Editor [page 45].

Element Description

Description An optional description of the event.

Part 1: Basic Orchestration Topics

40 Solutions Business Manager (SBM)

Element Description

Export to
file

Lets you save the event to an .mtd file that can be imported by another
process app that responds to this event. The file is used to create an
event definition in the other process app.

You can only export an event if an asynchronous orchestration action is
created for some transition.

After you export an event, a new event definition appears under the
Application Links heading in App Explorer.

Lock
definition

Lets an asynchronous orchestration workflow in another process app
use the event definition. For details, see About Events [page 27].

Fields to
send with
event

Lets you specify which fields from the primary table are sent with the
event. If you want to use a field that is not on the list, add the field to
the primary table.

Additional
data to
send with
event

Lets you add data elements to send with the event. These data
elements are then accessible to the receiving orchestration workflow.

New Adds an entry to the list of additional data elements.

Delete Removes the selected data element from the list.

Move up,
Move down

Moves the selected data element up or down in the list.

Event with Reply Dialog Box
This dialog box opens when you select the following options to create an orchestration link
and a new synchronous orchestration workflow from the Action Wizard. (See the SBM
Composer Guide for information about the Action Wizard.)

• Orchestration Workflow as the action type

• and wait for reply (synchronous) in the rule description

• (Add new workflow...) from the Select workflow service list

The information you specify in this dialog box is reflected in the orchestration link editor.
For more information, see About Orchestration Links [page 29] and Orchestration Link
Editor [page 39].

Note: You can also open this dialog box by right-clicking the Orchestration
Links heading in App Explorer and selecting Add New Event With Reply. In
this scenario, you create the orchestration link first and then use it later in the
Action Wizard. However, this method is not recommended.

SBM Orchestration Guide 41

The following table describes the configuration settings for a new orchestration link.

Element Description

Name The name of the new orchestration link. This name appears under the
Orchestration Links heading in App Explorer, where you can select it
to make changes.

Description An optional description for the orchestration link.

Orchestration The orchestration that contains the orchestration workflow. You can
select (New orchestration...) to associate the orchestration link with
an orchestration workflow in a new orchestration that is to be added to
the open process app.

Workflow The name of the new orchestration workflow.

Fields used
by event

The fields from the primary table whose values are passed as inputs to
the orchestration workflow. If you need data that is not listed, define it
as Additional data used by event, (described below).

Fields
returned by
event

The fields in the primary table whose values are returned as outputs
from the orchestration workflow.

Important: The Item ID field cannot be returned by the
workflow.

Additional
data used by
event

Additional data items that are passed as inputs to the orchestration
workflow.

New Adds an item to the list of additional data items.

Delete Removes the selected data item from the list.

Move up,
Move down

Moves the selected data item higher or lower in the list.

New Orchestration Dialog Box
Use the New Orchestration dialog box to add an orchestration to a process app. This
dialog box opens when you select the following options to define an orchestration action in
the Action Wizard. (See the SBM Composer Guide for information about the Action
Wizard.)

• Orchestration Workflow as the action type

• and continue executing (asynchronous) or and wait for reply (synchronous)
in the rule description

Part 1: Basic Orchestration Topics

42 Solutions Business Manager (SBM)

• (New orchestration...) from the Select an orchestration and an orchestration
workflow list

This dialog box also opens when you do one of the following:

• Click the down arrow under the Component icon on the Ribbon, and select
Orchestration.

• Right-click the name of an existing application in App Explorer, point to Add New,
and then select Orchestration.

• Right-click the process app name in App Explorer, point to Add New, and then
select Orchestration.

• Right-click the name of an existing orchestration in App Explorer, point to Add New,
and then select Orchestration.

Element Description

Name The name of the orchestration, which is limited to 128 characters, including
spaces. Orchestrations in the repository must be uniquely named, even if
they are used in different process apps.

Category An optional category for the orchestration.

Event Definitions List
When you select the Application Links heading under the name of an orchestration in
App Explorer, the list of event defintions associated with the orchestration is displayed on
the Event Definition tab in the editor pane.

Tip: Double-click an event definition in the list to view it in the Property Editor
and on the event definition tab.

The following table describes the elements in the event definition editor.

Element Description

Name The name of the event definition.

Product
name

The name of the external product or application raising the event
associated with the event definition.

Tool
version

The version number of the event definition. This information is used to
distinguish between event definitions used by the same product.

Product
instance

The instance of the event definition. This information is used to distinguish
between event definitions used by the same product.

Type For an event defintion, the type is always Event Definition.

SBM Orchestration Guide 43

Element Description

Updated
by

The user name of the person who last reimported the event definition.

Updated
on

The date and time that the event definition was last reimported.

Event Definition Configuration Dialog Box
This dialog box opens when you right-click Application Links under an orchestration
name in App Explorer and then select Add New Event Definition.

Note: For more information about event definitions, see About Application Links
and Event Definitions [page 28].

Creating a New Custom Event Definition
The following table describes the configuration settings for a new custom event definition.
These settings are present when Create new custom event definition is selected in the
dialog box (the default selection). The Event Manager uses these settings (and the event
notice, object type, and event type that you define later) to identify the orchestration
workflow that will be called in response to an event raised from an external product or
another process app.

Element Description

Event
definition
name

A unique name for the new event definition. This name does not affect
the mapping of an event to a workflow.

Event
definition
version

The event definition version. This information is used to distinguish
between event definitions used by the same product.

Product
name

The name of the external product or application raising the event
associated with the event definition.

Product
instance

The instance of the event definition. This information is used to
distinguish between event definitions used by the same product.

Importing an Event Definition File to Create a New Custom Event
Definition
The following table describes the configuration settings for a new event definition that
uses an existing event definition (.mtd) file or .wsdl file that was exported from another
event definition. These configuration settings are present when you select Create from
event definition file in the dialog box.

Part 1: Basic Orchestration Topics

44 Solutions Business Manager (SBM)

Element Description

MTD The name of the event definition file that defines the event definition.
This file was exported from another event definition, and contains the
available messages, object types, and event types.

Browse for a file with an .mtd (or .wsdl) extension that defines the
event you want to process. Alternatively, you could enter a URL to a
Web page containing information that defines the event definition.

When you are satisfied with your selection, click OK.

Note: Be sure to specify a file that contains valid ALF event
definitions. Otherwise, when you click OK, SBM Composer
reminds you to select a valid file.

Documentation Information about the event definition, as defined in the event
definition file.

Operations The operations defined in the process event definition file.

Event Definition Editor
The event definition Property Editor is displayed when you select an event definition in
App Explorer. The tab displays the details of an event definition that SBM automatically
creates when an application workflow is linked to an asynchronous orchestration workflow
using the Action Wizard, or an event definition that you create or import using the
Event Definition Configuration dialog box. (See the SBM Composer Guide for
information about the Action Wizard.)

Each event is defined by an object type and an event type. When an event is fired during
the execution of a transition, information is passed to the asynchronous orchestration
workflow. The event definition editor shows what the information could be.

Element Description

Object
types

The object types defined in the event definition.

Event
types

The event types defined in the event definition.

Custom
data

The data sent with the event, shown in the Extension node. You can
define data elements when you create a new event definition. If you import
the event definition, the Extension node includes the field data and
additional data you specified when you created the event definition (see
Event Editor [page 40]).

Applying Event Priorities
You can use the event types below to prioritize events. For example, to prioritize
synchronous events over asynchronous events, ensure that all asynchronous events are

SBM Orchestration Guide 45

assigned one of the INCONTROL event types. Alternatively, to lower the priority of
synchronous events below Application Engine asynchronous events, you could assign
them one of the INCONTROL event types.

Priority
Rank

Event
Type

Comments

10 INCONTROL
LOW Event

Lowest event priority.

20 INCONTROL
Event

Recommended event type for external asynchronous events.

30 INCONTROL
HIGH Event

40 LOW
Priority
Event

Assigned to all asynchronous events by default, including
those generated by Application Engine.

50 MEDIUM
Priority
Event

60 HIGH
Priority
Event

Assigned to all synchronous events by default. It is not
recommended to assign this event type to asynchronous
events to prioritize them over synchronous events.

70 CRITICAL
Priority
Event

Highest event priority. Use only if you are certain that an
asynchronous event should be executed prior to all other
asynchronous events and synchronous events.

By default, synchronous events from Application Engine are assigned HIGH Priority
Event status and asynchronous events from Application Engine are assigned LOW
Priority Event status. This gives priority to orchestrations that are executed when a user
performs a transition in the browser interface so that users are not waiting unnecessarily.

For external events, this type can be set directly in the "EventType" parameter of the ALF
Event SOAP message.

Map Event Definition to Workflow Dialog Box
This dialog box opens when you add a new event map from the Event Map tab of the
event definition Property Editor. It enables you to associate an event definition event with
an asynchronous orchestration workflow. In this dialog box, you select from the events
that the event definition can raise, and select an orchestration workflow that is compatible
with the selected event. You can also use this dialog box to create a new orchestration
workflow.

When the event definition defines specific events, the dialog box contains only compatible
events. Event compatibility is determined by the content of the Extension element in the
Custom data section of the event definition editor. If two different elements have the

Part 1: Basic Orchestration Topics

46 Solutions Business Manager (SBM)

same information in the Extensions element, then the same orchestration workflow can
handle both events.

Important: An event definition must contain at least one object type and one
event type.

The following table describes the configuration settings for a new event map.

Element Description

Event
definition

The name of the event definition. This field is read-only.

Tool
version

The version number of the event definition. This information is used to
distinguish between event definitions used by the same product.

Product
name

The name of the external product or application raising the event
associated with the event definition.

Product
instance

The instance of the event definition. This information is used to distinguish
between event definitions used by the same product.

Object
type

The object type that together with the event type, defines this mapping to
the Event Manager. The object type identifies the type of object or record
that triggers the event type.

Select the object type to associate with the orchestration workflow.

Event
type

The event type that together with the object type, defines this mapping to
the Event Manager. The event type identifies what occurs to trigger the
event.

Select the event type to associate with the orchestration workflow.

Workflow Select an existing orchestration workflow or select [New Workflow] to
create a new one. This should be the orchestration workflow that you want
to run when an event with the selected values is received by the Event
Manager.

Event Definition Property Editor
The event definition Property Editor is displayed when you select an event definition in
App Explorer. Use it to control how event definitions are mapped to asynchronous
orchestration workflows in your process app. You can also use it to perform operations
such as exporting the .mtd or .wsdl file for the event definition so it can be imported by
another process app or an external product, making an imported event definition editable,
and refreshing the definition of the event definition.

SBM Orchestration Guide 47

General Tab of the Event Definition Property Editor

This tab is displayed when you select an event definition in App Explorer. It is also
displayed when you double-click an event definition in the event definition editor. In App
Explorer, event definitions are displayed under the Application Links heading in an
orchestration, and can be displayed under the External Events subheading under
Orchestration Links in an application.

Element Description

Name The name of the event definition.

Product
name

The name of the external product or application raising the event
associated with the event definition.

Event
definition
source

The origin of the event definition:

• Imported from the event for the application. (The event is
automatically created when you create an asynchronous
orchestration workflow using the Action Wizard.)

• An .mtd file or a .wsdl file that was exported from another event
definition, or a .wsdl file that was used to manually create an event
definition. (Select Create from event definition file on the Event
Definition Configuration dialog box to create this event definition).

• Defined manually by the user. (Select Create new custom event
definition on the Event Definition Configuration dialog box to
create this event definition.)

Description An optional description.

Event
definition
version

The version number from .mtd or .wsdl file.

Product
instance

The instance of the event definition. This information is used to
distinguish between event definitions used by the same product.

Export
event
definition

Saves the .mtd or .wsdl file for the event definition to the file system of
your computer, so it can be imported into any application or
orchestration. For more information, see About Application Links and
Event Definitions [page 28].

Reimport Reimports the .mtd or .wsdl file. This button is only available for
existing event definitions.

Part 1: Basic Orchestration Topics

48 Solutions Business Manager (SBM)

Element Description

Regenerate Regenerates the event definition. This button is only available for event
definitions that were automatically generated from an event in an
application. Use this button to regenerate the event definition if the
changes you made to the event do not appear in the event definition
editor.

Export
external
event
WSDL

Saves the .wsdl file for the event definition to the file system of your
computer, so it can be used to raise an event from any external product
that can call Web services.

Note: This button is only available for new event definitions.
For more information, see About Application Links and Event
Definitions [page 28].

Convert to
custom
event
definition

Converts an event definition that was created in another process app or
created manually into a custom event definition that you can edit.

Note: This button is available for any event definition that was
created in and exported from SBM Composer. It is also
available for a manually-created event definition, if its
structure and naming conventions are consistent with those of
custom event definitions created by SBM Composer.

External Event Configuration Dialog Box
This dialog box opens when you create a new external event from App Explorer or when
you use the Action Wizard to import an event definition that was exported from an
orchestration or application. Use it to provide the required configuration information.

The following table describes the configuration settings for a new event definition.

Element Description

File The name of the event definition that defines the external event.

Browse for an .mtd or .wsdl file, or enter a URL, and then press the
Tab key or click in another field to read the file.

Service Lists the services defined in the file. If only one service is defined,
this field is read-only.

Port Lists the unique names of ports for the selected service, as defined in
the file. If only one port is defined, this field is read-only.

Documentation Optional information about the services, as provided by the creator of
the file. This field is read-only.

SBM Orchestration Guide 49

Element Description

Operations Lists the individual operations available for the selected service, as
defined in the file.

Note: For information about event definitions, see About Application Links and
Event Definitions [page 28]. For information about the Action Wizard, see the
SBM Composer Guide.

Orchestration Workflow Editor
The orchestration workflow editor is displayed when you select an orchestration workflow
or subroutine in App Explorer. This is where you create and edit an orchestration workflow
or subroutine. You use the orchestration workflow editor (with the Step Palette and the
orchestration workflow Property Editor) to visually lay out and sequence the components
of your orchestration workflow or subroutine.

You create an orchestration workflow or subroutine by dragging and dropping steps from
the Step Palette and arranging them in sequence. You also configure details such as
which Web service is to be called or what calculations are to be performed; and map data
among inputs, outputs, and working data.

Step Palette
The Step Palette is located to the right of the orchestration workflow editor. It contains
the icons that represent the various functions that an orchestration workflow or
subroutine can perform.

The Step Palette has three main sections:

• New Items, from which you can drag-and-drop orchestration workflow steps.

• Configured Items, where items are shown if they have been configured. For
example, after you specify the WSDL file for a Web service, it appears in this section.

• Zoom preview section, where you can manipulate the portion of a large orchestration
workflow that is visible in the orchestration workflow editor.

Orchestration Workflow Property Editor
This section describes the tabs of the orchestration workflow Property Editor. This
Property Editor is displayed when you select an orchestration workflow or subroutine in
App Explorer.

• General Tab of the Orchestration Workflow Property Editor [page 50]

• Event Map Tab of the Orchestration Workflow Property Editor [page 51]

• Data Mapping Tab of the Orchestration Workflow Property Editor [page 52]

General Tab of the Orchestration Workflow Property Editor

The General tab of the orchestration workflow Property Editor is displayed when you
select an orchestration workflow or subroutine in App Explorer.

Part 1: Basic Orchestration Topics

50 Solutions Business Manager (SBM)

Element Description

Name The name of an orchestration workflow or subroutine.

The name must start with a letter (A-Z, a-z), and can contain any
combination of letters, digits (0-9), and underscores.

Type The orchestration workflow type, either Synchronous or
Asynchronous. See Comparing Synchronous With Asynchronous
Orchestration Workflows [page 14] for details.

For subroutines, the type is Synchronous.

Description An optional description of the orchestration workflow or subroutine.

Event definition
(orchestration
workflow only)

The name of the event definition that is linked to the orchestration
workflow.

WSDL message
(orchestration
workflow only)

The message from the WSDL file for the event definition. Often this
is the EventNotice containing the data that accompanies the event.

Event Map Tab of the Orchestration Workflow Property Editor

The Event Map tab of the orchestration workflow Property Editor is displayed when you
select an aynchronous orchestration workflow in App Explorer. The linking between an
event and the orchestration workflow is called an event map, and is displayed on this tab.

Element Description

Event
definition

The name of the event definition that is mapped to the orchestration
workflow.

Object
type

The object type that together with the event type, defines this mapping to
the Event Manager. The object type identifies the type of object or record
that triggers the event type.

Event
type

The event type that together with the object type, defines this mapping to
the Event Manager. The event type identifies what occurs to trigger the
event.

Add Opens the Map Workflow to Event Definition dialog box, in which you
map the orchestration workflow to an event definition. See Map Workflow
to Event Definition Dialog Box [page 54] for details.

Remove Removes the selected event map entry.

SBM Orchestration Guide 51

Element Description

View/
Edit

Opens the Event Definition Event Mapping dialog box, which lets you
view the mapping of event information to an orchestration workflow. See
Event Definition Event Mapping Dialog Box [page 53] for details.

Note: If the orchestration workflow is checked in, the button is
View, and the dialog box is read-only. If it is checked out, the
button is Edit, and you can modify some fields in the dialog box.

Data Mapping Tab of the Orchestration Workflow Property Editor

The Data Mapping tab of the orchestration workflow Property Editor is displayed when
you select an orchestration workflow or subroutine in App Explorer. See About Data
Mapping [page 19] for related information.

Element Description

Working
data

Displays (in a hierarchical manner) the working data for the orchestration
workflow or subroutine.

Right-click a working data element for a menu of applicable commands. For
example, the Properties Mode and Mapping Mode commands toggle
between the two modes, and the Type [type] command gives you the
option of changing the type of the selected data element.

Note: Properties mode shows additional information for the
selected element (such as its type and namespace).

Inputs Displays the inputs to the orchestration workflow or subroutine. For
subroutines, you can add, edit, and delete inputs, while for orchestration
workflows, you can only view inputs.

Right-click an input to display a menu of applicable commands.

Source
elements

Shows the source of each working data element, if any.

Right-click a data element and select Suggested Mappings to see the
mappings that SBM Composer suggests.

Select a cell in this column and click the down arrow to open the Select a
Source popup, which offers options beyond the suggested mappings.

Right-click a source element to open a menu of applicable commands.

Default
value

Lets you view or edit the default values, if any, for data elements.

Note: Any value specified in the Source elements column will
override the value in the corresponding Default value column.

Part 1: Basic Orchestration Topics

52 Solutions Business Manager (SBM)

Element Description

Vertical
divider

Clicking the vertical divider to the right of the Property Editor switches the
Property Editor between mapping mode and properties mode. You can drag
the divider to the left to expand the properties mode panel.

Event Definition Event Mapping Dialog Box
The Event Definition Event Mapping dialog box lets you view or edit the mapping
between an event definition and an asynchronous orchestration workflow. The map
defines the specific values for the event that causes the workflow to be invoked.

Element Description

Event
Definition

Identifies the event definition.

Version The version number of the event definition. This information is used to
distinguish between event definitions used by the same product.

Product
name

The name of the external product or application raising the event
associated with the event definition.

Product
instance

The instance of the event definition. This information is used to distinguish
between event definitions used by the same product.

If the mapped orchestration workflow is checked out, you can modify the
value of this element.

Object
type

The object type that together with the event type, defines this mapping to
the Event Manager. The object type identifies the type of object or record
that triggers the event type.

If the mapped orchestration workflow is checked out, you can modify the
value of this element.

Event
type

The event type that together with the object type, defines this mapping to
the Event Manager. The event type identifies what occurs to trigger the
event.

If the mapped orchestration workflow is checked out, you can modify the
value of this element.

Workflow The orchestration workflow that you want to run when an event with the
selected values is received by the Event Manager.

SBM Orchestration Guide 53

Map Workflow to Event Definition Dialog Box
This dialog box opens when you add a new event map from the Event Map tab on an
asynchronous orchestration workflow Property Editor. It lets you associate an
orchestration workflow with an event definition. In this dialog box, you select from the
events that the event definition can raise, and select an orchestration workflow that is
compatible with the selected event. You can also use this dialog box to create a new
orchestration workflow.

You can associate an orchestration workflow with more than one event but the events
must be compatible. Event compatibility is determined by the content of the Extension
element in the Custom data section of the event definition editor. If two different
elements have the same information in the Extensions element, then the same
orchestration workflow can handle both events.

After an orchestration workflow is associated with an event definition event, the dialog
box shows only compatible event definition events.

Note: Event definition events can come from SBM applications or from external
products.

The following table describes the configuration settings for a new event map.

Element Description

Event
definition

The name of the event definition. This field is read-only.

Tool
version

The version number of the event definition. This information is used to
distinguish between event definitions used by the same product.

Product
name

The name of the external product or application raising the event
associated with the event definition.

Product
instance

The instance of the event definition. This information is used to distinguish
between event definitions used by the same product.

Object
type

The object type that together with the event type, defines this mapping to
the Event Manager. The object type identifies the type of object or record
that triggers the event type.

Select the object type to associate with the orchestration workflow.

Event
type

The event type that together with the object type, defines this mapping to
the Event Manager. The event type identifies what occurs to trigger the
event.

Select the event type to associate with the orchestration workflow.

Part 1: Basic Orchestration Topics

54 Solutions Business Manager (SBM)

Element Description

Workflow Select an existing orchestration workflow or select [New Workflow] to
create a new one. This should be the orchestration workflow that you want
to run when an event with the selected values is received by the Event
Manager.

Select Library Type Dialog Box
You use the Select Library Type dialog box when you create a new data element and
need to assign a type to it, or when you need to change the type of an existing data
element.

This dialog box makes it easy to select a type when there are many types in the Type
Library. The types that are listed in the dialog box are all named types defined by the Web
services that were imported into the orchestration, and that are listed in the Type Library
Editor [page 55].

This dialog box opens when you perform the following steps:

1. Click the Data Mapping tab on the orchestration workflow Property Editor.

2. Right-click in the Working Data area, and select Properties Mode, if not already
selected.

3. To add a new data element and select the library type, right-click the Working Data
node, select Add New, and then select Select from Type Library.

4. To change the library type of an existing data element, right-click the data element,
select Type [type], and then select Select from Type Library.

Element Description

Look for Type a partial or complete data element name you want to find.

Find Starts the search.

Clear Clears the information in the Look for box.

Options Provides other search options.

Show type
details

Opens the Type details section, which shows detailed information
about the selected element.

Type Library Editor
When you select the Type Library heading under the name of an orchestration in App
Explorer, a list of named types associated with the process app is displayed in the editor
pane. This read-only list contains all named types defined by the Web services that were
imported into the orchestration.

SBM Orchestration Guide 55

The named types are grouped by namespace at the top part of the editor. When you
select a named type, its data elements are displayed at the bottom part of the editor.

You can search for a named type by typing the full name or a few letters of the name in
the Look for box, and then clicking Find. Search options are available in the Options
menu.

Part 1: Basic Orchestration Topics

56 Solutions Business Manager (SBM)

Chapter 3: Orchestration Procedures

This section includes the following orchestration procedures:

• Using Data Mapping [page 57]

• Creating a New Custom Event Definition [page 69]

• Importing an Event Definition File for a New Custom Event Definition [page 69]

• Mapping an Orchestration Workflow to an Event Definition [page 70]

• Using the Step Palette [page 71]

• Using the Scope, Throw, and Compensate Steps to Handle Faults From Web Services
[page 96]

• Raising External Events [page 137]

Using Data Mapping
You use the Data Mapping tab of the orchestration workflow Property Editor to create
working data and define its default values, and to specify the source of data needed by a
Web service. This section includes data mapping procedures.

• Creating a Practice Process App for Data Mapping [page 58]

• Creating Private Simple or Library Type Working Data [page 59]

• Creating Private Complex Working Data [page 60]

• Creating Arrays of Working Data [page 61]

• Setting Default Values [page 63]

• Setting Source Values Using Suggested Mappings [page 64]

• Setting Source Element Mappings Manually [page 64]

• Mapping Identical Structures [page 65]

• Viewing and Editing Data Element Properties [page 66]

• Showing the Required Flag [page 67]

• Clearing Data Mapping [page 68]

SBM Orchestration Guide 57

Creating a Practice Process App for Data Mapping
In this section, you will create a new process app (DataMappingProcessApp) that contains
an application workflow. Then you will create an orchestration workflow
(DataMappingOrchWF), which you will use to practice mapping data.

Important: This process app is for demonstration purposes only and is not
valid. Do not try to publish or deploy it.

To create the practice process app:

1. Start SBM Composer.

2. Click the Composer button, and then select New.

3. In the Create New Process App dialog box that opens, in the Available
Templates pane, click Application Process App, and then click Create.

4. In the Configure Process App dialog box that opens, in the Process app name
box, type DataMappingProcessApp.

5. In the Category box, type Examples.

6. In the Application name box, type DataMappingApp, and then click OK.

7. In App Explorer, under the Application Workflows heading, right-click
DataMappingApp and then select Rename.

8. Change the name to DataMappingAppWF and then press the Tab key.

9. In App Explorer, right-click DataMappingProcessApp, point to Add New, and then
select Orchestration.

10. In the New Orchestration dialog box, type DataMappingOrch in the Name box and
then click OK.

11. In App Explorer, under Application Workflows, select DataMappingAppWF.

12. In the application workflow editor, select the New state. On the General tab of the
application workflow Property Editor, change the value of the Name field to State,
and then press the Tab key.

13. In the application workflow editor, select the Submit transition.

14. On the General tab of the transition Property Editor, change the value of the Name
field to Transition, and then press the Tab key.

15. Right-click the Transition transition, and select Show Actions.

16. On the Actions tab of the transition Property Editor, click New.

The Action Wizard asks, "Which type of action do you want to execute?"

17. Without changing anything, click Next.

The Action Wizard asks, "What do you want to affect?"

18. Without changing anything, click Next.

Part 1: Basic Orchestration Topics

58 Solutions Business Manager (SBM)

The Action Wizard asks, "Which condition do you want to check?"

19. Without changing anything, click Next.

The Action Wizard asks, "Which orchestration workflow do you want to invoke?"

20. In the list under Step 1, select (Add new workflow...).

SubmitTransitionWorkflow is added to list and selected.

21. Without changing anything in Step 2, click Finish.

22. In App Explorer, under DataMappingOrch, under Orchestration Workflows,
select SubmitTransitionWorkflow.

23. On the General tab of the orchestration workflow Property Editor, change the value
of the Name field to DataMappingOrchWF, and then press the Tab key.

24. Save the process app by performing the following steps:

a. On the Quick Access Toolbar, click the Save locally icon. A message reminds
you that the design elements were saved to the Local Cache only.

b. Click OK.

25. If you closed SBM Composer after saving the process app, perform the following
steps:

a. Start SBM Composer.

b. Click the Composer button, and then select Open.

c. In the Open Process App dialog box, select DataMappingProcessApp, and
then click Open.

d. In App Explorer, click the All Items filter, if it is not already selected.

Creating Private Simple or Library Type Working Data
On the Data Mapping tab of the orchestration workflow Property Editor, you can create
private simple or library type working data elements to use in an orchestration. The steps
for creating them are the same.

Private simple working data is classified by data types. In computer programming, a data
type restricts a data element to a particular type of information. For example, a string can
contain only characters and spaces. "ProcessApp101" and "ab cde!f" are both strings. An
integer can contain only whole numbers, that is, numbers that do not contain fractional
parts. The numbers 1, 88, and 1099 are integers; however, 1.5, 88.72, and 1099.579 are
not (they are called floating-point numbers). Private simple working data is shared by all
of the steps in the orchestration workflow.

Library type working data is provided by the WSDL files that are imported into an
orchestration workflow. For example, the "auth" library type is a private complex type that
contains the userId, password, hostname, and loginAsUserId parameters supplied by the
SBM Web service. For more information about the "auth" data element (argument), refer
to the SBM Web Services Developer's Guide.

SBM Orchestration Guide 59

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab of the orchestration workflow Property Editor.

3. To add a new data element, right-click the WorkingData step input, select Add
New, and then select Select from Type Library.

4. Select a data type. (The icon to the left of the name changes accordingly.)

5. Change the name of the new data element, if you want.

In the following exercise, you will create a private simple working data element
(PrivateSimple) and a library type data element (LibraryType).

To create a private simple working data element and a library type working data
element:

1. In App Explorer, select DataMappingOrchWF under the Orchestration
Workflows heading.

2. In the orchestration workflow Property Editor, select the Data Mapping tab.

The WorkingData step input should be visible under the name of the orchestration
workflow (DataMappingOrchWF) in the Working data column. (If it is not, click a
blank area in the orchestration workflow editor.)

3. To create a private simple working data element:

a. Right-click the WorkingData step input, select Add New, and then select a data
type such as Boolean or Integer.

A new data element (Boolean or Integer) is added under the WorkingData
step input.

b. Change the name of the new data element to PrivateSimple.

4. To create a library type working data element:

a. Right-click the WorkingData step input, select Add New, and then select
Select from Libray Type.

b. Select a data type such as Auth or CredentialsType. If you selected Auth, four
child elements are added under the Auth data element.

A new data element (Auth or Credentials) is added under PrivateSimple.

c. Change the name of the new data element to LibraryType.

Creating Private Complex Working Data
On the Data Mapping tab of the orchestration workflow Property Editor, you can create
private complex data to use in orchestrations.

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab of the orchestration workflow Property Editor.

Part 1: Basic Orchestration Topics

60 Solutions Business Manager (SBM)

3. To add a new data element, right-click the WorkingData step input, select Add
New, and then select Complex Type.

4. Rename the new data element, if you want.

5. To add a child data element, right-click the new data element again, select Add
Child, and then select a type.

6. Rename the new child data element, if you want.

7. Repeat the previous two steps to add more child data elements.

In the following exercise, you will create a private complex working data element named
"PrivateComplex" that contains three child data elements (Child1, Child2, and Child3).

To create a private complex working data element:

1. Under Orchestration Workflows, select DataMappingOrchWF.

2. In the orchestration workflow Property Editor, click the Data Mapping tab.

The WorkingData step input should be visible under the name of the orchestration
workflow (DataMapping) in the Working data column. (If it is not, click a blank
area in the orchestration workflow editor.)

3. Right-click the WorkingData step input, select Add New, and then select Complex
Type.

ComplexType appears under the WorkingData step input.

4. Change the name of the new data element (ComplexType) to PrivateComplex.

5. Right-click PrivateComplex, select Add Child, and then select a type. A new child
data element is added under PrivateComplex.

6. Change the name of the new child data element to Child1.

7. Repeat steps 5 [page 61] and 6 [page 61] two more times, naming the new child
data elements Child2 and Child3.

Creating Arrays of Working Data
On the Data Mapping tab of the orchestration workflow Property Editor, you can create
an array of working data to use in orchestrations. To do this, you first create an array
container data element, then the array, and then the array elements.

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab of the orchestration workflow Property Editor.

3. Create the array container data element by right-clicking the Working Data step
input, selecting Add New, and then selecting Complex Type.

4. Rename the new array container data element, if you want.

SBM Orchestration Guide 61

5. Create the array by right-clicking the array container data element again, selecting
Add Child, and then selecting a type.

6. Right-click the array, and then select Properties Mode, if it is not already selected.

7. In the properties area under Misc, select the IsUnbounded row.

8. Click the down arrow next to False, and then select True.

9. Close the properties area by right-clicking the array and then selecting Mapping
Mode.

10. Rename the array, if you want.

11. Create an array data element by right-clicking the array and then selecting Add
Array Element. (The new array data element inherits the name and data type of
the array. You cannot change this.)

12. Repeat the previous step to add more array data elements.

In the following exercise, you will create an array container data element (ArrayContainer)
that contains one array (Array) with three array elements (Array[1], Array[2], and
Array[3]).

To create an array of working data elements:

1. In App Explorer, select DataMappingOrchWF under the Orchestration
Workflows heading.

2. In the orchestration workflow Property Editor, click the Data Mapping tab.

The WorkingData step input should be visible under the name of the orchestration
workflow (DataMappingOrchWF) in the Working data column. (If it is not, click a
blank area in the orchestration workflow editor.)

3. Right-click the WorkingData step input, select Add New, and then select Complex
Type.

A new data element (ComplexType), which is the array container, is added under
the WorkingData step input.

4. Change the name of the new data element (ComplexType) to ArrayContainer.

5. Right-click ArrayContainer, select Add Child, and then select a type.

A new child element is added under ArrayContainer.

6. Change the name of the new child element to Array.

7. Right-click Array, and then select Properties Mode.

The properties area opens on the right side of the orchestration workflow Property
Editor.

8. In the properties area under Misc, select the IsUnbounded row.

9. Click the down arrow next to False, and then select True.

Part 1: Basic Orchestration Topics

62 Solutions Business Manager (SBM)

A left and right square bracket are added to the array name (Array[]) to indicate
that the data element is an array.

10. To close the properties area, right-click Array[], and then select Mapping Mode.

The number of array elements is displayed in parentheses to the right of Array[].
The number begins at 0 (zero) and increases by one each time you add an array
element.

11. Right-click Array[], and then select Add Array Element.

A new array element (Array[1]) is added under Array[].

12. Repeat step 11 [page 63] two more times.

Array elements Array[2] and Array[3] are added to Array[] under Array[1], and
(3 elements) is added to the right of Array[].

Setting Default Values
On the Data Mapping tab of the orchestration workflow Property Editor, you can set the
default value for a data element.

Note: For string type data elements, you must use escape sequences to add a
new line, insert a tab, enter a carriage return, or type a literal backslash. See
Using Escape Sequences [page 21] for details.

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab of the orchestration workflow Property Editor.

3. Click in the Default value column of a data element. Depending on the data type,
enter a value, click the down arrow and select an option on a menu, click the down
arrow and select a date from a calendar, and so on.

In this procedure, you will set the default value for PrivateSimple, which is a String data
type, to Text.
To set the default value for a data element:

1. In App Explorer, select DataMappingOrchWF under the Orchestration
Workflows heading.

2. In the orchestration workflow Property Editor, click the Data Mapping tab.

The WorkingData step input should be visible under the name of the orchestration
workflow (DataMappingOrchWF) in the Working data column. (If it is not, click a
blank area in the orchestration workflow editor.)

3. If the data type for PrivateSimple is something other than String, right-click the
PrivateSimple data element, point to Type [type], point to Private Simple, and
then select the String data type.

4. Locate the PrivateSimple data element, click in the cell corresponding to the
Default value column, enter Text, and then press the Tab key.

SBM Orchestration Guide 63

Setting Source Values Using Suggested Mappings
On the Data Mapping tab of the orchestration workflow Property Editor, you can set the
source value for a data element in its Source elements column to use in an orchestration
workflow. You can perform this procedure by selecting suggested mappings or by
selecting the values manually. Suggested mappings are for compatible data types only.
You can also map compatible and incompatible data types using the Select a source
popup, as explained in Setting Source Element Mappings Manually [page 64].

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab.

3. Right-click the Source elements column of the data element for which you want to
set a source value, point to Suggested Mappings, and then select a source value.
(You might have to expand one or more data elements to locate the data element
you want to map.)

In the following exercise, you will map the source data for the LibraryType data element
to a suggested data source.

To use suggested mappings for setting the source value for a data element:

1. In App Explorer, select DataMappingOrchWF under the Orchestration
Workflows heading.

2. In the orchestration workflow Property Editor, click the Data Mapping tab.

The Working Data step input should be visible under the name of the orchestration
workflow (DataMappingOrchWF) in the Working data column. (If it is not, click a
blank area in the orchestration workflow editor.)

3. Right-click the Working Data step input, select Add New, and then select String.

4. Change the name of the new data element (String) to SuggestedMapping.

5. Locate the SuggestedMapping data element, right-click the corresponding cell in
the Source elements column, point to Suggested Mappings, point to
Compatible Items, and then select Array[1](Working Data -
\ArrayContainer).

DataMappingOrchWorkflow\ArrayContainer\Array[1] is added to the Source
elements column.

Note: The Suggested Mappings menu is limited to 40 items: a
maximum of 20 exact matches, 10 similar matches, and 10 other
matches.

Setting Source Element Mappings Manually
On the Data Mapping tab of the orchestration workflow Property Editor, you can set the
source value for a data element in its Source elements column to use in an orchestration
workflow. You can perform this procedure by selecting suggested mappings or by
selecting the values manually. You select compatible and incompatible data types
manually using the Select a Source popup. Selecting suggested mappings is explained in
Setting Source Values Using Suggested Mappings [page 64].

Part 1: Basic Orchestration Topics

64 Solutions Business Manager (SBM)

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab of the orchestration workflow Property Editor.

3. Find a data element for which you want to set a source value, select its Source
Elements column, and then click the down arrow.

4. In the Select a source popup, select the source value or values that you want to
map, and then click OK.

In the following exercise, you will manually map the data for Child1 under the
PrivateComplex data element to a source value of a compatible data type.

To manually set the source value for a data element:

1. In App Explorer, select DataMappingOrchWF under the Orchestration
Workflows heading.

2. In the orchestration workflow Property Editor, click the Data Mapping tab.

The Working Data step input should be visible under the name of the orchestration
workflow (DataMappingOrchWF) in the Working data column. (If it is not, click a
blank area in the orchestration workflow editor.)

3. Right-click the Working Data step input, select Add New, and then select String.

4. Change the name of the new data element (String) to ManualMapping.

5. Locate the ManualMapping data element, select the corresponding cell in the
Source elements column, and then click the down arrow.

6. In the Select a source popup, under Working Data, expand ArrayContainer and
Array[] (3 records), select Array[2], and then click OK.

DataMappingOrchWorkflow\ArrayContainer\Array[2] is added to the Source
elements column.

This data source is of a compatible data type, as indicated by the message
"Compatible type selected" that briefly appears in the box to the left of the Clear
button in the Select a Source popup. The Select a Source popup also lets you
map incompatible data types or to select multiple data types to map to a single data
element, or both. To do this, click the Show advanced options link, and then
select the appropriate check box or check boxes.

Mapping Identical Structures
To reuse complex data structures or arrays within an orchestration workflow, copy them to
the desired locations in working data, inputs, or outputs. To pass on the mappings and
default values of a structure or array, use the Select a Source popup. If the structures
are identical, the compatible mapping appears in bold in the tool.

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab of the orchestration workflow Property Editor.

SBM Orchestration Guide 65

3. Copy a private complex working data structure to another working data location.

4. Use the Select a Source popup to map the copy to the original structure.

In the following exercise, you will make a copy of a complex working data structure and
map the copy to the original structure.

1. In App Explorer, select DataMappingOrchWF under the Orchestration
Workflows heading.

2. In the orchestration workflow Property Editor, click the Data Mapping tab.

The Working Data step input should be visible under the name of the orchestration
workflow (DataMappingOrchWF) in the Working data column. (If it is not, click a
blank area in the orchestration workflow editor.)

3. Right-click the PrivateComplex data structure, and select Copy.

4. Paste the PrivateComplex data structure in another working data location.

5. Select the copy's Source Elements column, and then click the down arrow.

6. In the Select a source popup, select the original PrivateComplex data structure,
and then click OK.

Note:

• If incompatible structures are mapped, the mapping appears in a warning
color (dark yellow) preceded by a # character, and a validation warning
will occur.

• If a mapping that was originally compatible has become incompatible, it
also appears in dark yellow preceded by a # with a validation warning. For
example, this can occur if a previously allowed mapping in earlier SBM
versions has become invalid, or if something has changed in the source or
target structure that has caused the mapping to be invalid.

• Additionally, if incompatible structures are mapped with the Permit
incompatible types to be mapped option enabled, the mapping appears
in a warning color (dark blue) preceded by a ! character. No validation
warning occurs in this case.

Viewing and Editing Data Element Properties
On the Data Mapping tab of the orchestration workflow Property Editor, you can view
and edit property information for a data element. This is useful if you need to view the
data types of data elements, or if you need to view or edit other properties, such as the
namespace, for a particular data element.

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab of the orchestration workflow Property Editor.

3. Right-click the Working data or Source elements column for working data, or the
Step inputs or Source elements column for source data, and then select
Properties Mode.

Part 1: Basic Orchestration Topics

66 Solutions Business Manager (SBM)

4. View or edit the properties for the selected working data, or view the data elements
for a Service step in the properties area that opens on the right side of the
orchestration workflow Property Editor.

5. To exit properties mode, right-click the Working data, Step inputs, or Type
column, and then select Mapping Mode.

Tip: You can also switch between mapping mode and properties mode by
clicking the vertical divider on the right side of the orchestration workflow
Property Editor.

In the following exercise, you will view the properties of the PrivateSimple working data
element.

To view property information for a data element:

1. In App Explorer, select DataMappingOrchWF under the Orchestration
Workflows heading.

2. In the orchestration workflow Property Editor, click the Data Mapping tab.

The Working Data step input should be visible under the name of the orchestration
workflow (DataMappingOrchWF) in the Working data column. (If it is not, click a
blank area in the orchestration workflow editor.)

3. Locate the SuggestedMapping data element, right-click the corresponding cell in
the Source elements column, and then select Properties Mode.
You can view the properties of working data elements and change any editable
values in the property area that opens on the right side of the orchestration
workflow Property Editor.

Note: You can only view the properties of a Service step.

4. To exit properties mode, right-click the SuggestedMapping data element, and then
select Mapping Mode.

Tip: You can also switch between mapping mode and properties mode by
clicking the vertical divider on the right side of the orchestration workflow
Property Editor.

Showing the Required Flag
In the hierarchy of step inputs and data elements on the Data Mapping tab of the
orchestration workflow Property Editor, each element has an associated icon. You can
identify required step inputs and data elements by a red symbol that appears in the top
left corner of the icon. This symbol is called the required flag.

Flagged input and output data elements for a Web service require specific data.
Sometimes a step input or a data element of the complex type displays the required flag,
but its child data elements are not flagged. To determine which data elements and the
type of data that are required for a Web service, refer to its WSDL file or to the
documentation for the Web service.

Flagged working data must be assigned a value before it can be used in an orchestration
workflow.

The following table gives examples of icons that identify required data elements.

SBM Orchestration Guide 67

Required Data Type Icon

String

Integer

Date

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab in the orchestration workflow Property Editor.

3. To show the required flag for all required step inputs and data elements, right-click
anywhere in the data mapping area, and then select Show Required Flag.

4. To hide all required flags, right-click anywhere in the data mapping area, and then
clear Show Required Flag.

To show the required flag for all required step inputs and data elements:

1. In App Explorer, select DataMappingOrchWF under the Orchestration
Workflows heading.

2. In the orchestration workflow Property Editor, click the Data Mapping tab.

The Working Data step input should be visible under the name of the orchestration
workflow (DataMappingOrchWF) in the Working data column. (If it is not, click a
blank area in the orchestration workflow editor.)

3. Right-click anywhere in the data mapping area, and then select Show Required
Flag.

The required flag appears on all required step inputs and data elements.

4. To hide all required flags, right-click anywhere in the data mapping area, and then
clear Show Required Flag.

Clearing Data Mapping
On the Data Mapping tab of the orchestration workflow Property Editor, you can clear
the mapping for a data element. (You cannot use this procedure to clear the default
value.)

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Click the Data Mapping tab of the orchestration workflow Property Editor.

3. Find a data element for which you want to clear the data mapping, right-click the
corresponding cell in the Source elements column, and then select Clear
Mapping.

Part 1: Basic Orchestration Topics

68 Solutions Business Manager (SBM)

4. You can also clear the mapping by selecting the appropriate cell in the Source
elements column, clicking the down arrow, selecting [no mapping] in the Select
a source popup, and then clicking OK.

In this exercise, you will clear the mapping for the SuggestedMapping data element.

To clear the data mapping for a data element:

1. In App Explorer, select DataMappingOrchWF under the Orchestration
Workflows heading.

2. In the orchestration workflow Property Editor, click the Data Mapping tab.

The Working Data step input should be visible under the name of the orchestration
workflow (DataMappingOrchWF) in the Working data column. (If it is not, click a
blank area of the orchestration workflow editor.)

3. Locate the SuggestedMapping data element, right-click the corresponding cell in
the Source elements column, and then select Clear Mapping.

Tip: You can also clear the mapping by selecting the appropriate cell in the
Source elements column, right-clicking the down arrow, selecting [no
mapping] in the Select a source popup, and then clicking OK.

Creating a New Custom Event Definition
This topic describes how to create a new custom event definition in SBM Composer.

Note: For information about event definitions, see About Application Links and
Event Definitions [page 28].

To create a new custom event definition:

1. Right-click Application Links under the orchestration name in App Explorer, and
then select Add New Event Definition. The Event Definition Configuration
dialog box opens.

2. Click Create new custom event definition, if this option is not already selected.

3. Complete the dialog box as described in Event Definition Configuration Dialog Box
[page 44].

Importing an Event Definition File for a New Custom
Event Definition
This topic describes how to import an existing event definition (.mtd) file or .wsdl file to
use in a new custom event definition.

Note: For information about event definitions, see About Application Links and
Event Definitions [page 28].

To import a file for a new custom event definition:

1. Right-click Application Links under the orchestration name in App Explorer, and
then select Add New Event Definition. The Event Definition Configuration
dialog box opens.

SBM Orchestration Guide 69

2. Click Create from event definition file.

3. Complete the dialog box as described in Event Definition Configuration Dialog Box
[page 44].

Mapping an Orchestration Workflow to an Event
Definition
To connect events with asynchronous orchestration workflows, you set up a mapping on
the Event Map tab of the event definition Property Editor or orchestration workflow
Property Editor. You can either generate an orchestration workflow from an event, or you
can create an orchestration workflow and choose what event it is going to handle. In
either case, the event Extension data becomes visible as part of the input data for the
orchestration workflow and is available for processing by it.

You can add additional events to an orchestration workflow, but only if they are
compatible with the existing event definition. To be compatible, the events must have the
same Extension data. Generally, this means that the events are defined by the same
event definition.

To map a new orchestration workflow to an event definition:

1. In App Explorer, under the Application Links heading, click the name of the event
definition.

2. On the Event Map tab of the event definition Property Editor, click Add.

3. In the Map Event Definition to Workflow dialog box that opens, perform the
following steps:

a. Select the event, defined by the Object type and Event type values, that you
want the new orchestration workflow to handle.

b. Select [New Workflow] from the Workflow list.

c. Click OK.

An orchestration workflow named Workflow appears under the Orchestration
Workflows heading, and the event definition is automatically mapped to it.

Note: To see the mapping, view the information on the Event Map
and Data Mapping tabs of the orchestration workflow Property Editor.

To map an existing orchestration workflow to an event definition (first method):

1. In App Explorer, under the Orchestration Workflows heading, click the name of a
new orchestration workflow.

2. On the Event Map tab of the orchestration workflow Property Editor, click Add.

Note: This tab is not available for synchronous orchestration workflows.

3. In the Map Workflow to Event Definition dialog box that opens, perform the
following steps:

Part 1: Basic Orchestration Topics

70 Solutions Business Manager (SBM)

a. Select an event definition from the Event definition list. This list is read-only if
there is only one event definition in the orchestration.

b. If the product supports more than one set of custom data, select the message to
determine what will be received as inputs to the orchestration workflow.

c. Select the event, defined by the Object type and Event type values, that you
want the new orchestration workflow to handle.

d. Click OK.

To map an existing orchestration workflow to an event definition (second
method):

1. In App Explorer, under the name of an orchestration, under the Application Links
heading, click the name of the event definition.

2. On the Event Map tab of the event definition Property Editor, click Add.

3. In the Map Event Definition to Workflow dialog box that opens, perform the
following steps:

a. Select the event, defined by the Object type and Event type values, that you
want the new orchestration workflow to handle.

b. Select the existing orchestration workflow from the Workflow list.

c. Click OK.

Using the Step Palette
Steps are the building blocks of an orchestration workflow. You select steps from the Step
Palette to the right of the orchestration workflow editor, and then use the drag-and-drop
operation to move them onto the line between the Start and End steps in the
orchestration workflow. This creates the control flow structure that determines what the
orchestration workflow does.

The following topics describe how to use some steps available on the Step Palette:

• Creating a Practice Process App for Using the Step Palette [page 72]

• Using the Calculate Step [page 73]

• Using the Decision Step [page 75]

• Using the ForEach Step [page 78]

• Using the While Step [page 82]

• Using the Service Step [page 85]

• Using the Group Step [page 96]

See Using the Scope, Throw, and Compensate Steps to Handle Faults From Web Services
[page 96] for information about those steps.

SBM Orchestration Guide 71

Creating a Practice Process App for Using the Step Palette
In this section, you create a new process app with one application workflow. Then you
create the following orchestration workflows in the corresponding sections for each step:
CalculateOrchWF, DecisionOrchWF, ForEachOrchWF, WhileOrchWF, and ServiceOrchWF.
You use these orchestration workflows to practice using the following steps in the Step
Palette: Calculate, Decision, ForEach, While, and Service.

To create the practice process app:

1. Start SBM Composer.

2. Click the Composer button, and then click New.

3. In the Create New Process App dialog box that opens, in the Available
Templates pane, click Application Process App, and then click Create.

4. In the Configure Process App dialog box that opens, in the Process app name
and Application name boxes, type StepPaletteProcessApp, and then click OK.

The new process app appears in App Explorer.

5. In App Explorer, click the All Items filter.

6. Click StepPaletteProcessApp.

7. On the StepPaletteProcessApp tab, change the Logical Name to StepPaletteApp.

8. Under Application Workflows, click StepPaletteProcessApp.

9. On the General tab of the Property Editor, change the Name to StepPaletteAppWF,
and then press the Tab key.

10. In the application workflow editor, double-click the name of the New state, type
State1, and then press the Tab key.

11. Double-click the name of the Submit transition, type Calculate, and then press the
Tab key.

12. In the Common Items section of the Workflow Palette, drag an State onto the
application workflow editor and drop it to the right of the State1 state.

13. Change the Name to State2, and then press the Tab key.

14. In the Common Items section of the Workflow Palette, drag a Transition onto
the State1 state, release the mouse button, and then click State2.

15. Change the Name of the Transition to Decision, and then press the Tab key.

16. Add three more states and three more transitions. Drop each new state somewhere
after the previous state, and name the new states State3, State4, and State5. Name
the transitions as follows:

• Between State2 and State3: ForEach

• Between State3 and State4: While

Part 1: Basic Orchestration Topics

72 Solutions Business Manager (SBM)

• Between State4 and State5: Service

Tip: You can drop a state anywhere on the application workflow editor as
long as you connect it, using a transition, to the previous state in the
workflow.

17. In App Explorer, click StepPaletteProcessApp.

18. On the Home tab of the Ribbon, in the New group, click Component, and then
select Orchestration.

19. In the New Orchestration dialog box, type StepPaletteOrch in the Name box, and
then click OK.

20. Save the process app:

a. On the Quick Access Toolbar, click the Save locally icon.

A message reminds you that the design elements have been saved to the Local
Cache only.

b. Click OK.

21. If you closed SBM Composer after saving the process app:

a. Start SBM Composer.

b. Click the Composer button, and then click Open.

c. In the Open Process App dialog box, select StepPaletteProcessApp, and then
click Open.

d. In App Explorer, select the All Items filter.

Using the Calculate Step
You use the Calculate step to perform calculations on the data elements in an
orchestration workflow. When you select a Calculate step, the General and Options
tabs appear in the step Property Editor. The General tab contains the type, name, and
description of the Calculate step. The Options tab contains the following three sections:

• The Target section defines the entity that receives the data.

• The Expression section defines the source of the data.

• The Assignments section enables you to combine multiple assignments (target-
expression pairs) in a single Calculate step.

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the line between the Start and End steps.

3. On the General tab of the Property Editor, you can change the name of the
Calculate step and enter a description.

SBM Orchestration Guide 73

4. On the Options tab, in the Target section, enter a working data element or an
expression that represents the data element that receives the value from the
Expression section. You can use any of the functions, logical operators, or
arithmetic operators available on the Functions, Logical, and Operator menus,
respectively.

5. In the Expression section, enter an expression that represents the source of the
data to be received by the target. You can use any of the functions, logical
operators, or arithmetic operators available on the Functions, Logical, and
Operator menus, respectively.

For more information about creating expressions, see About the Expression Editor
[page 32].

6. To add another assignment, right-click in the Assignments section and select Add
New Assignment. Define the target and expression for the new assignment.

You can also split assignments into multiple Calculate steps, as well as copy,
rename, delete, and reorder assignments within the step.

Creating an Empty Orchestration Workflow For the Calculate Step

In this exercise, you create an empty synchronous workflow. In the next section, you add
and configure a Calculate step.

To create an empty orchestration workflow for the Calculate step:

1. In App Explorer, under StepPaletteApp, under Application Workflows, select
StepPaletteAppWF.

2. In the application workflow editor, right-click the Calculate transition, and select
Show Actions on the menu.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard asks, "Which type of action do you want to execute?"

Under Step 1, Orchestration Workflow should be selected.

4. In the Step 2 box, click the and continue executing (asynchronous) link, select
and wait for reply (synchronous), and then click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

5. In the Step 1 box, select After, do not change anything in the Step 2 box, and
then click Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

6. On the menu under Step 1, select (Add new workflow...).

7. In the Event With Reply dialog box, do the following:

a. Change the Name to CalculateOrchWFWR.

b. On the Orchestration menu, select StepPaletteOrch.

c. In the Workflow box, change the name to CalculateOrchWF.

Part 1: Basic Orchestration Topics

74 Solutions Business Manager (SBM)

d. In the Fields used by event column, select the Title check box.

e. In the Fields returned by event column, select the Title check box.

f. Click OK.

8. In the Action Wizard, click Finish.

Practicing With the Calculate Step

In this exercise, you add a Calculate step to the CalculateOrchWF orchestration workflow
and define values for it. When CalculateOrchWF is invoked, it places the text are here. in
the Title box of the State1 state form after you click the OK button on the transition
form between the Submit state and State1.

To use the Calculate step in an orchestration workflow:

1. In App Explorer, under StepPaletteOrch, under Orchestration Workflows, select
CalculateOrchWF.

2. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the line between the Start and End steps.

3. On the Options tab of the Property Editor, in the Target section, enter the following
expression: EventNoticeWithReply\Extension\Title

4. In the Expression section, enter the following function:
CONCAT(EventNoticeWithReply\Extension\Title, " are here.")
For more information about creating expressions, see About the Expression Editor
[page 32].

5. Select the End step.

6. On the Data Mapping tab, under Extension, locate the Title data element, select
the cell corresponding to the Source elements column, and then click the down
arrow.

7. In the Select a source popup, expand Inputs, EventNoticeWithReply, and
Extension; select Title; and then click OK.

Using the Decision Step
You use the Decision step to decide between two or more possible outcomes. This step
lets you branch the flow of control based on rules. Rules are expressions, as described in
About the Expression Editor [page 32].

Using the Insert New Branch command, you can add branches to the Decision step.
When you select a branch, the General and Options tabs appear in the Property Editor.
The General tab provides a name and an optional description for the branch. The
Options tab defines the rule associated with the branch. (The default branch, named
Otherwise, has no rule. It is invoked if all the other branches are false.)

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

SBM Orchestration Guide 75

2. In the New Items section of the Step Palette, drag a Decision step onto the line
between the Start and End steps.

3. On the General tab of the Property Editor, you can change the name of the
Decision step and you can also enter a description.

4. To add a branch, right-click the Decision step, and then select Insert New Branch
on the menu.

A Branch is added above the Otherwise branch.

5. On the General tab of the Property Editor, you can change the name of the Branch
and you can also enter a description.

6. On the Options tab of the Property Editor, in the Rule section, enter an expression
that represents the rule for that branch. You can use any of the functions, logical
operators, or arithmetic operators available on the Functions, Logical, and
Operator menus, respectively.

(For more information about expressions, see About the Expression Editor [page
32].)

7. Select the new (non-Otherwise) Branch.

8. Add a step or steps from the Step Palette to the Branch to define the actions that
should be taken or the calculations that should be performed while the rule defined
for the branch is true.

9. Repeat the previous step to add and configure other decision branches.

Tip: You can switch from branch to branch by selecting a branch on the
menu of the Property Editor. Also, when you right-click the name of a
branch in the orchestration workflow editor, you can select menu items
that let you duplicate and rename the branch, and to reorder branches.

10. Add a step or steps from the Step Palette to the Otherwise branch. You do not
define a rule for this branch.

Tip: To hide the branches as you work on another part of the orchestration
workflow, click the minus sign to the left of the Decision step.

Creating an Empty Orchestration Workflow For the Decision Step

In this exercise, you create an empty synchronous orchestration workflow. In the next
section, you add and configure a Decision step.

To create an empty orchestration workflow for the Decision step:

1. In App Explorer, under StepPaletteApp, under Application Workflows, select
StepPaletteAppWF.

2. In the application workflow editor, right-click the Decision transition, and select
Show Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard asks, "Which type of action do you want to execute?"

Part 1: Basic Orchestration Topics

76 Solutions Business Manager (SBM)

Under Step 1, Orchestration Workflow should be selected.

4. In the Step 2 box, click the and continue executing (asynchronous) link, select
and wait for reply (synchronous), and then click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

5. In the Step 1 box, select After, do not change anything in the Step 2 box, and
then click Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

6. On the menu under Step 1, select (Add new workflow...).

7. In the Event With Reply dialog box that opens:

a. Change the Name to DecisionOrchWFWR.

b. On the Orchestration menu, select StepPaletteOrch.

c. In the Workflow box, change the name to DecisionOrchWF.

d. In the Fields used by event column, select the Title check box.

e. In the Fields returned by event column, select the Title check box.

f. Click OK.

8. In the Action Wizard, click Finish.

Practicing with the Decision Step

In this exercise, you add a Decision step to the DecisionOrchWF orchestration workflow
and define values for it. When DecisionOrchWF is invoked, it inserts One, Two, or Otherwise
(depending on your input) in the Title box of the State2 state form after you click the OK
button on the transition form between State1 and State2. If you enter the number 1 and
then click OK, One is inserted into the Title box. If you enter the number 2, Two is inserted.
If you enter any other text, Otherwise is inserted.

To use the Decision step in an orchestration workflow:

1. In App Explorer, under StepPaletteOrch, under Orchestration Workflows, select
DecisionOrchWF.

2. In the New Items section of the Step Palette, drag and drop a Decision step onto
the line between the Start and End steps.

3. Right-click the Decision step, and then select Insert New Branch.

A new branch is added above the Otherwise branch.

4. On the General tab of the Property Editor, change the Name to One, and then press
the Tab key.

5. On the Options tab, in the Rule section, enter the following function:
NORMALIZESPACE(EventNoticeWithReply\Extension\Title)="1".

SBM Orchestration Guide 77

6. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the One branch.

7. On the Options tab of the Calculate step Property Editor, in the Target section,
enter the following expression: EventNoticeWithReply\Extension\Title

8. In the Expression section, enter the following text, including the quotation marks:
"One"

9. Right-click the Decision step, and then select Insert New Branch.

A new branch is added between the One branch and the Otherwise branch.

10. On the General tab of the Property Editor, change the Name to Two, and then press
the Tab key.

11. On the Options tab, in the Rule section, enter the following function:
NORMALIZESPACE(EventNoticeWithReply\Extension\Title)="2".

12. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the Two branch.

13. On the Options tab of the Property Editor, in the Expression section, enter the
following text, including the quotation marks: "Two"

14. In the Target section, enter the following expression:
EventNoticeWithReply\Extension\Title

15. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the Otherwise branch.

16. On the Options tab of the Property Editor, in the Expression section, enter the
following text, including the quotation marks: "Otherwise"

17. In the Target section, enter the following expression:
EventNoticeWithReply\Extension\Title

18. Select the End step.

19. On the Data Mapping tab, expand Extension, locate the Title data element, select
the cell corresponding to the Source elements column, and then click the down
arrow.

20. In the Select a source popup, expand DecisionOrchWF, Inputs,
EventNoticeWithReply, and Extension; select Title; and then click OK.

Using the ForEach Step
The ForEach step repeats the operations that you specify for each element in a list or
multi-item data element. These operations continue to execute until the last element has
been processed. Then the orchestration workflow continues to the next step. The ForEach
index counts the number of loops, and the ForEach item is the value of the data element
at the end of a particular loop.

Part 1: Basic Orchestration Topics

78 Solutions Business Manager (SBM)

When you select a ForEach step, the General and Options tabs appear in the Property
Editor. The General tab provides a name and optional description for the step. The
Options tab defines the source for the multi-item data element.

Note: During loops, the Web service and subroutine inputs retain the data for
all transactions. In some cases, this caching may cause issues for subsequent
loops. For information on resetting the data collected in these inputs, refer to
Resetting Data [page 18].

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. On the Data Mapping tab of the Property Editor, create an array of working data.
(See Creating Arrays of Working Data [page 61].)

3. In the New Items section of the Step Palette, drag and drop a ForEach step onto
the line between the Start and End steps.

The lines from the ForEach step icon travel in two directions. One points to
subsequent steps and the other loops back to the ForEach step icon. You place the
steps or calculations that are to be repeated on the loop that points to the ForEach
step icon.

4. On the General tab of the Property Editor, you can change the name of the
ForEach step and you can also enter a description.

5. On the Options tab, in the Source section, enter an expression that describes the
source of the data to be processed. You can use any of the functions, logical
operators, or arithmetic operators available on the Functions, Logical, and
Operator menus, respectively.

For more information about expressions, see About the Expression Editor [page 32].

6. Add other steps from the Step Palette to the repeating section (the top loop) to
define the actions that should be taken or calculations that should be performed
while there are still members of the data element to be processed.

7. Add other steps from the Step Palette to the non-repeating section (the bottom
loop) to define the actions that should be taken or calculations that should be
performed after all of the members of the data element have been processed.

Tip: To duplicate or delete a ForEach step, right-click the step, and then
select the appropriate option. To hide the loops while you work on another
part of the orchestration workflow, click the minus sign to the left of the
ForEach step.

Creating an Empty Orchestration Workflow for the ForEach Step

In this exercise, you create an empty synchronous orchestration workflow. In the next
section, you add a ForEach step and then configure it.

To create an empty orchestration workflow for the ForEach step:

1. In App Explorer, under the StepPaletteApp heading, under Application
Workflows, select StepPaletteAppWF.

SBM Orchestration Guide 79

2. In the application workflow editor, right-click the ForEach transition, and select
Show Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard asks, "Which type of action do you want to execute?"

Under Step 1, Orchestration Workflow should be selected.

4. In the Step 2 box, click the and continue executing (asynchronous) link, select
and wait for reply (synchronous) on the menu, and then click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

5. In Step 1, select After, do not change anything in the Step 2 box, and then click
Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

6. On the menu under Step 1, select (Add new workflow....).

7. In the Event With Reply dialog box that opens:

a. Change the Name to ForEachOrchWFWR.

b. On the Orchestration menu, select StepPaletteOrch.

c. In the Workflow box, change the name to ForEachOrchWF.

d. In the Fields used by event column, select the Title check box.

e. In the Fields returned by event column, select the Title check box.

f. Click OK.

8. In the Action Wizard, click Finish.

Practicing with the ForEach Step

In this exercise, you add a ForEach step to the ForEachOrchWF orchestration workflow
and define values for it. When ForEachOrchWF is invoked, it appends an equals sign and
the current loop index value to the default value of each data element in the list of data
elements under Array[]. After Array[5] is processed, the resulting values are inserted in
the Title box of the State3 state form after you click the OK button on the transition
form between State2 and State3.

To use the ForEach step in an orchestration workflow:

1. In App Explorer, under StepPaletteOrch, under Orchestration Workflows, select
ForEachOrchWF.

2. On the Data Mapping tab of the Property Editor, create an array of data elements
as follows:

a. Right-click the WorkingData step input, select Add New, and then select
Complex Type.

b. Change the name of the new data element (ComplexType) to ArrayContainer.

Part 1: Basic Orchestration Topics

80 Solutions Business Manager (SBM)

c. Right-click ArrayContainer, select Add Child, and then select String.

d. Change the name of the new data element (String) to Array.

e. Right-click Array, and then select Properties Mode.

f. In the properties area under Misc, select the IsUnbounded row.

g. Click the down arrow next to False, and then select True.

h. To close the properties area, right-click Array[], and then select Mapping
Mode.

i. Right-click Array[], and then select Add Array Element. Array[1] is added to
Array[].

j. Repeat the previous step four more times. Array elements Array[2], Array[3],
Array[4], and Array[5] are added to Array[], under Array[1].

k. In the Default value column for Array[1], type the word One; for Array[2],
type Two; for Array[3], type Three; for Array[4], type Four; and for Array[5],
type Five.

3. Create a ForEach index:

a. Right-click the WorkingData step input, select Add New, and then select
Integer.

b. Change the name of the new data element (Integer) to Index.

c. In the Default value column, type -1.

4. Create a ForEach item value:

a. Right-click the WorkingData step input, select Add New, and then select
String.

b. Change the name of the new data element (String) to Value.

c. In the Default value column, type Test.

5. In the New Items section of the Step Palette, drag and drop a ForEach step onto
the line between the Start and End steps.

6. On the Options tab of the Property Editor, in the Source section, enter the
following expression: ArrayContainer.Array

7. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the line that loops back to the ForEach step.

8. On the General tab of the Property Editor, change the Name to SetIndex, and then
press the Tab key.

9. On the Options tab, in the Target section, type the following: Index

10. In the Expression section, enter the following expression: ForEach.index

SBM Orchestration Guide 81

11. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the line that loops back to the ForEach step, to the right of the SetIndex
step.

12. On the General tab of the Property Editor, change the Name to SetValue, and then
press the Tab key.

13. On the Options tab, in the Target section, type Value

14. In the Expression section, enter ForEach\item

15. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the line that loops back to the ForEach step, to the right of the SetValue step.

16. On the General tab of the Property Editor, change the Name to MakeTitle, and then
press the Tab key.

17. On the Options tab, in the Target section, enter the following:
EventNoticeWithReply\Extension\Title

18. In the Expression section, enter the following:
CONCAT(EventNoticeWithReply\Extension\Title," ", STRING(Index)," =",
STRING(Value), " ")

19. Select the End step.

20. On the Data Mapping tab of the Property Editor, under Extension, locate the Title
data element, select the corresponding cell in the Source elements column, and
then click the down arrow.

21. In the Select a source popup, expand Inputs, EventNoticeWithReply, and
Extension; select Title, and then click OK.

Using the While Step
The While step repeatedly executes the operations you specify while the conditions
defined in the rule are true, or until the conditions are false. The rule is an expression, as
described in About the Expression Editor [page 32].

When you click a While step, the General and Options tabs appear in the Property
Editor. The General tab provides a name and an optional description for the step. The
Options tab defines the rule for the step.

Note: During loops, the Web service and subroutine inputs retain the data for
all transactions. In some cases, this caching may cause issues for subsequent
loops. For information on resetting the data collected in these inputs, refer to
Resetting Data [page 18].

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. In the New Items section of the Step Palette, drag and drop a While step onto
the line between the Start and End steps.

3. On the General tab of the Property Editor, you can change the name of the While
step and you can also enter a description.

Part 1: Basic Orchestration Topics

82 Solutions Business Manager (SBM)

4. On the Options tab, in the Rule section, enter an expression that represents the
rule that must hold true for the While step actions to repeat. You can use any of the
functions, logical operators, or arithmetic operators available on the Functions,
Logical, and Operator menus, respectively.

For more information about expressions, see About the Expression Editor [page 32].

5. Add other steps from the Step Palette to the repeating section (the top loop) to
define the actions that should be taken or calculations that should be performed
while the While step is true.

6. Add other steps from the Step Palette to the nonrepeating section (the bottom
loop) to define the actions that should be taken or calculations that should be
performed if the While step is false.

Tip: To duplicate or delete the While step, right-click the step, and then
select the appropriate options on the menu. To hide the loops as you work
on another part of the orchestration workflow, click the minus sign to the
left of the While step.

Creating an Empty Orchestration Workflow For the While Step

In this exercise, you create an empty synchronous orchestration workflow with reply. In
the next section, you add a While step and then configure it.

To create an empty orchestration workflow for the While step:

1. In App Explorer, under StepPaletteApp, under Application Workflows, select
StepPaletteAppWF.

2. In the application workflow editor, right-click the While transition, and select Show
Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard asks, "Which type of action do you want to execute?"

Under Step 1, Orchestration Workflow should be selected.

4. In the Step 2 box, click the and continue executing (asynchronous) link, select
and wait for reply (synchronous) on the menu, and then click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

5. In the Step 1 box, select After, do not change anything in the Step 2 box, and
then click Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

6. On the menu under Step 1, select (Add new workflow...).

7. In the Event With Reply dialog box that opens:

a. Change the Name to WhileOrchWFWR.

b. On the Orchestration menu, select StepPaletteOrch.

c. In the Workflow box, change the name to WhileOrchWF.

SBM Orchestration Guide 83

d. In the Fields used by event column, select the Title check box.

e. In the Fields returned by event column, select the Title check box.

f. Click OK.

8. In the Action Wizard, click Finish.

Practicing With the While Step

In this exercise, you add a While step to the WhileOrchWF orchestration workflow and
define values for it. When WhileOrchWF is invoked, it counts the number of the strings in
the Title box that consist of the letters one. If you type oneoneoneoneone in the Title
box, the following text is inserted in the Title box of the State3 state form when you click
the OK button on the transition form between State2 and State3: I found 5 ones.
To use the While step in an orchestration workflow:

1. In App Explorer, under StepPaletteOrch, under Orchestration Workflows, select
WhileOrchWF.

2. On the Data Mapping tab of the Property Editor, create a loop counter as follows:

a. Right-click the Working Data step input, select Add New, and then select
Integer.

b. Change the name of the new data element (Integer) to LoopCounter.

c. In the Default value column, type the number 0.

3. Create a temporary storage area for the working title as follows:

a. Right-click the Working Data step input, select Add New, and then select
String.

b. Change the name of the new data element (String) to WorkingTitle.

c. For the WorkingTitle data element, select the cell corresponding to the Source
elements column, and then click the down arrow.

d. In the Select a source popup, expand Inputs, EventNoticeWithReply, and
Extension; select Title; and then click OK.

4. In the New Items section of the Step Palette, drag a While step onto the
orchestration workflow editor, and drop it between the Start and End steps.

5. On the Options tab of the Property Editor, in the Rule section, enter the following
function: CONTAINS(WorkingTitle,"one")

6. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the top loop (the repeating section) of the While step.

7. On the General tab of the Property Editor, change the Name to Counter, and then
press the Tab key.

8. On the Options tab, in the Target section, enter the following: LoopCounter

Part 1: Basic Orchestration Topics

84 Solutions Business Manager (SBM)

9. In the Expression section, enter the following: LoopCounter+1

10. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the top loop of the While step, to the right of the Counter step.

11. On the General tab of the Property Editor, change the Name to Title, and then
press the Tab key.

12. On the Options tab, in the Expression section, enter the following:
SUBSTRINGAFTER(WorkingTitle,"one")

13. In the Target section, enter the following: WorkingTitle

14. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the bottom loop (the non-repeating section) of the While step.

15. On the General tab of the Property Editor, change the Name to EndTitle, and then
press the Tab key.

16. On the Options tab, in the Expression section, enter the following function:
CONCAT("I found",STRING(LoopCounter)," ones.")

17. In the Target section, enter the following: WorkingTitle

18. Select the End step.

19. On the Data Mapping tab, expand Extension, locate the Title data element, select
the corresponding cell in the Source Elements column, and then click the down
arrow.

20. In the Select a source popup, expand WhileOrchWF, Inputs,
EventNoticeWithReply, and Extension; select Title; and then click OK.

Using the Service Step
You use the Service step to call a Web service from an orchestration workflow. On the
Property Editor for the Service step, you specify the WSDL file that describes the Web
service and which of its defined operations to use.

When you select a Service step, the General and Data Mapping tabs appear in the
Property Editor. The General tab provides a name and an optional description for the step
and specifies which Web service and operation are to be used. The Data Mapping tab
defines the default values or source elements for the inputs to the Web service.

Procedure Summary

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. In the Configured Items section of the Step Palette, drag and drop a Service
step onto the line between the Start and End steps.

3. On the General tab of the Property Editor, you can change the name of the Service
step and you can also enter a description.

4. On the Service menu, select the WSDL file for the Web service that you want to
use.

SBM Orchestration Guide 85

5. On the Data Mapping tab, you can identify the inputs, or data elements, that are
required by the Web service for the selected operation by the required flag that
appears on the icon associated with the data element.

If you do not see the required flag, right-click in any part of the data mapping area
and select Show Required Flag.

6. To define default values for any of the Web service inputs, enter them in the Default
values column.

7. To map the source values for a specific input using suggested mappings, see Setting
Source Values Using Suggested Mappings [page 64].

The outputs of the Web service appear as potential inputs for subsequent steps in
the orchestration workflow.

Tip: To duplicate a Service step, right-click the step, and then select
Duplicate.

Creating an Empty Orchestration Workflow For the Service Step

In this exercise, you create an empty synchronous orchestration workflow with reply. In
the next section, you add a Service step and then configure it.

To create an empty orchestration workflow for the Service step:

1. In App Explorer, under StepPaletteApp, under Application Workflows, select
StepPaletteAppWF.

2. In the application workflow editor, right-click the Service transition, and select
Show Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard asks, "Which type of action do you want to execute?"

Under Step 1, Orchestration Workflow should be selected.

4. In the Step 2 box, click the and continue executing (asynchronous) link, select
and wait for reply (synchronous), and then click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

5. In the Step 1 box, select Before, and then click Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

6. On the menu under Step 1, select (Add new workflow...).

7. In the Event With Reply dialog box that opens:

a. Change the Name to ServiceOrchWFWR.

b. On the Orchestration menu, select StepPaletteOrch.

c. In the Workflow box, change name to ServiceOrchWF.

d. In the Fields used by event column, select the Title check box.

Part 1: Basic Orchestration Topics

86 Solutions Business Manager (SBM)

e. In the Fields returned by event column, select the Title check box.

f. Click OK.

8. In the Action Wizard, click Finish.

9. In App Explorer, under StepPaletteApp, under Orchestration Links, select
ServiceOrchWFWR.

10. On the ServiceOrchWFWR tab:

a. In the Fields used by event column, select the Item Id check box. The Title
check box should already be selected.

b. In the Fields returned by event column, the Title check box should be
selected.

Practicing with the Service Step

In this exercise, you add a Service step to the ServiceOrchWF orchestration workflow and
define values for it. When ServiceOrchWF is invoked, it inserts your login ID in the Title
box of the transition page between State4 and State5 when you click the Service button
on the State4 state form.

To use the Service step in an orchestration workflow:

1. In App Explorer, under StepPaletteOrch, under Orchestration Workflows, select
ServiceOrchWF.

2. In the New Items section of the Step Palette, drag a Service step onto the
orchestration workflow editor, and drop it between the Start and End steps.

3. On the General tab of the Property Editor, on the Service menu, select the
sbmappservices72 Web service.

4. On the Operation menu, select the GetItem Web service operation.

5. On the Data Mapping tab, expand the Auth data element, and in the Default
value column, enter your SBM user ID and password.

6. Still on the Data Mapping tab, locate the TableId_ItemId data element, select
the corresponding cell in the Source elements column, and then click the down
arrow.

7. In the Select a source popup, expand Inputs, EventNoticeWithReply, and
Extension; select ItemId_TableRecId; and then click OK.

8. In the orchestration workflow editor, select the End step.

9. On the Data Mapping tab of the Property Editor, under Extension, locate the Title
data element, select the corresponding cell in the Source elements column, and
then click the down arrow.

10. In the Select a source popup, expand sbmappservices72_GetItem, Outputs,
GetItemResponse, return, item, and createdBy; select loginId, and then click
OK.

SBM Orchestration Guide 87

Data Mapping Tab of the Service Step Property Editor

The Data Mapping tab of the Service step Property Editor is available when you select a
Service step in an orchestration workflow in the orchestration workflow editor.

Element Description

Step
inputs

This column lists the inputs to the Web service associated with the selected
Service step.

Right-click a step input to display a menu of applicable commands.

Source
elements

This column shows the source of each of the step inputs.

Select a cell in this column and click the down arrow that appears to open
the Select a source popup, which offers options beyond the suggested
mappings.

Right-click a source element to display a menu of applicable commands.

Default
value

This column allows you to view or edit the default values, if any, for the
step inputs.

Note: Any value specified in the Source elements column
overrides the value in the corresponding Default value column.

Vertical
divider

Clicking the vertical divider to the right of the Property Editor switches the
Property Editor between mapping mode and properties mode. Properties
mode displays additional information for the selected data element (such
as its type and namespace). Drag the divider to the left to expand the
properties mode panel.

To see the data sent with events raised during the execution of application
workflow transitions, click on a blank area of the orchestration workflow
editor, and then click the vertical divider.

Part 1: Basic Orchestration Topics

88 Solutions Business Manager (SBM)

Mapping SOAP Header Data

SBM Composer lets you map SOAP Header information, if the WSDL file you are using
defines SOAP Header data. This data is listed on the Data Mapping tab of a Service step
in the Step Inputs column, and its name ends in _Envelope.

Note: SBM Composer does not support headerfault message elements.

Note: See Using SOAP Headers to Enable WS-Security [page 90] for
information about using SOAP header data for security purposes.

To map SOAP header data:

1. In the orchestration workflow editor, select the Service step for which you want to
map data that will be sent in the SOAP Header. The Web service's WSDL file must
define SOAP Header data.

2. On the General tab of the Property Editor, make sure that the Service step is
associated with a Web service and an operation.

3. On the Data Mapping tab of the Property Editor, expand the _Envelope step input.

All defined SOAP Header data is listed as data elements under this step input. Step
inputs that appear below and at the same level as the _Envelope step input and all
of their data elements are defined in the SOAP Body.

4. For each of the required data elements, do one of the following:

• In the Source elements column:

1. Click the down arrow.

2. In the Select a source popup, select the data element to be used from
another location in the workflow, such as the output of a Service step or a
working data element.

3. Click OK.

• In the Default values column, type the path of the data element to be used,
such as SomeWorkflow\FirstCategory\SecondItem.

Using Basic Access Authentication

Some Web services require authentication, such as a user name and a password. In one
common method, called basic access authentication, this information is included in the
HTTP header of the Web service call. SBM Composer supports basic access authentication
for individual Web service operations within an orchestration workflow.

SBM Orchestration Guide 89

For example, you can create two working data elements to hold a user name and a
password, enter text as default values, and set up the Authentication input's UserName
and Password components for multiple Service steps to use those working data
elements. That way, if the user name or password changes, you only need to update the
two working data elements to keep all of the Service steps set up to call the Web service.

Important: The UserName and Password values are ignored if an
administrator configures the basic access authentication type for the endpoint
pointing to the Web service manually in Application Repository. In this case, the
credentials specified in Application Repository are used instead of those
specified in this procedure. Process apps are more portable if the Application
Repository credentials are used, because you can bind to the appropriate
endpoint for your environment when you deploy.

To use basic access authentication:

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Select a Service step for which you want to set up basic access authentication.

3. On the General tab of the Property Editor, make sure the Service step is associated
with a Web service and an operation, and that the Web service supports basic access
authentication.

4. In the orchestration workflow editor, right-click the Service step, and then select
Use Basic Access Authentication.

This adds the Authentication step input (with the UserName and Password data
elements), to the Data Mapping tab of the Property Editor. These data elements
can be used for the Service step and for any other Service steps in the
orchestration workflow that are associated with the same Web service operation.

5. For each of the Service steps to which the Authentication step input was added,
do one of the following for both the UserName and Password data elements:

• In the Source elements column:

1. Click the down arrow.

2. In the Select a source popup that opens, select the source value to be used
from some location in the workflow, such as the output of another Service
step or a working data element.

3. Click OK.

• In the Default values box, type the value to be used.

Using SOAP Headers to Enable WS-Security

WS-Security ensures the identify, integrity, and security of a SOAP message. It is applied
at the Web service layer, as opposed to basic access authentication, which is applied at
the HTTP transport layer. SOAP messages are typically exchanged over HTTP, so you can
use basic access authentication for them. However, WS-Security provides an extra level of
security for messages that take a complicated path or that use a non-HTTP transport
mechanism.

Part 1: Basic Orchestration Topics

90 Solutions Business Manager (SBM)

WS-Security elements are embedded within the SOAP message <env:Header> element.
These take the form of one or more <wss:security> elements that contain the
appropriate security information as required by the particular service deployment.

Although it is possible to declare WS-Security elements in a Web service WSDL file, this is
not typically done. Instead, WS-Policy is used to document the security that a particular
service requires. SBM does not currently support WS-Policy. However, it is possible to use
data mapping in SBM Composer to create SOAP header elements.

To do this, there must be at least one declared header in the Web service WSDL. Any
header will do; It does not have to be a WS-Security header. Because headers are not
typically present in Web service WSDLs, you probably need to make a local copy of the
WSDL and then edit it to add a placeholder header.

CAUTION:

Do not import the WS-Security schema into your copy of the WSDL or into SBM
Composer to get the WS-Security <env:Header> elements and types. The way
the schema is declared is problematic, and there is inadequate support for it
from SBM Composer.

To enable WS-Security:

1. Create a Placeholder element and a Header message in the WSDL file as shown in
bold and italics in the following example. The Placeholder element causes SBM
Composer to provide an _Envelope element in the SOAP request message. The
Header message will contain the WS-Security data, which mirrors the
UsernameToken element in the WS-Security schema.

Note: This example contains only one operation. If there are more
operations you will need to declare a header for each one you want to use.
You can typically reference the same header message declaration.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
→xmlns:tns="http://www.example.org/SOAPHeaderExample_1/"
→xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd=
→"http://www.w3.org/2001/XMLSchema" name="SOAPHeaderExample_1"
→targetNamespace="http://www.example.org/SOAPHeaderExample_1/">

<wsdl:types>
<xsd:schema targetNamespace="http://www.example.org/

→SOAPHeaderExample_1/">
<xsd:element name="NewOperation">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="in" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="NewOperationResponse">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="out" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

SBM Orchestration Guide 91

<xsd:element name="Placeholder" type="xsd:string"/>
</xsd:schema>

</wsdl:types>
<wsdl:message name="NewOperationRequest">

<wsdl:part element="tns:NewOperation" name="parameters"/>
</wsdl:message>
<wsdl:message name="NewOperationResponse">

<wsdl:part element="tns:NewOperationResponse" name="parameters"/>
</wsdl:message>
<wsdl:message name="Header">

<wsdl:part element="tns:Placeholder" name="placeholder"/>
</wsdl:message>
<wsdl:portType name="SOAPHeaderExample_1">

<wsdl:operation name="NewOperation">
<wsdl:input message="tns:NewOperationRequest"/>
<wsdl:output message="tns:NewOperationResponse"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="SOAPHeaderExample_1SOAP" type="tns:

→SOAPHeaderExample_1">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/

→soap/http"/>
<wsdl:operation name="NewOperation">

<soap:operation soapAction="http://www.example.org/
→SOAPHeaderExample_1/NewOperation"/>

<wsdl:input>
<soap:body use="literal"/>
<soap:header message="tns:Header" part="placeholder"

→use="literal" />
</wsdl:input>
<wsdl:output>

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="SOAPHeaderExample_1">

<wsdl:port binding="tns:SOAPHeaderExample_1SOAP" name=
→"SOAPHeaderExample_1SOAP">

<soap:address location="http://www.example.org/"/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

Tip: In the example above, note that the Placeholder namespace
matches the namespace that is used for http://www.w3.org/2001/
XMLSchema (xsd). If the namespace was <wsdl:definitions
xmlns:s="http://www.w3.org/2001/XMLSchema", you would insert
<s:element name="Placeholder" type="s:string"/> to match the
namespace.

2. Import the WSDL file into SBM Composer:

a. Select the Web Services header under the orchestration in App Explorer.

b. Right-click and then select Add New Web Service.

Part 1: Basic Orchestration Topics

92 Solutions Business Manager (SBM)

c. In the Web Service Configuration dialog box that opens, browse to the WSDL
file and then click OK.

3. Click the Data Mapping tab in the orchestration workflow editor, and add working
data elements as shown below to store the WS-Security data. Use the exact names
and types, because they mirror the structure of the particular WS-Structure you
need to use. Declare each element with the following namespace:
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsssecurity-
secext-1.0.xsd.

Note: SBM Composer has some limitations as to the structures it can
create. You can usually work around these limitations by declaring the
structure you need in the WSDL schema. Due to problems with the WS-
Security schema, you cannot use it directly and will need to recreate the
appropriate WS-Security structure in the Web service WSDL.

In this example used in this topic, the WS-Security UsernameToken structure is
used:

<wsse:Security>
<wsse:UsernameToken>

<wsse:Username>theUsername</wsse:Username>
<wsse:Password>thePassword</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>

4. Type a default value for the Username and Password, or click in the Source
elements column and then map to values. If you do not do this, the values will not
appear in the SOAP message.

5. In the orchestration workflow editor, select the Service step.

6. On the Data Mapping tab of the step Property Editor, map the _Envelope step
input to the SOAPHeader working data element that will store the security data.

SBM Orchestration Guide 93

The following example SOAP request shows the result of this procedure.

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/
→envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<env:Header>
<ns9:Security xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/

→business-process/" xmlns:defaultNS="http://SOAPHeaderTest1"
xmlns:defaultNS1="http://www.example.org/SOAPHeaderExample_1/"
xmlns:ns9="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
→wssecurity-secext-1.0.xsd" xmlns:tns="http://SOAPHeaderTest1">

<ns9:Username>theUsername</ns9:Username>
<ns9:Password>thePassword</ns9:Password>

</ns9:Security>
</env:Header>
<env:Body>

<defaultNS1:NewOperation
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:defaultNS="http://www.example.org/SOAPHeaderExample_1/"
xmlns:defaultNS1="http://www.example.org/SOAPHeaderExample_1/"
xmlns:ns8="http://www.example.org/SOAPHeaderExample_1/">

<in xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="http://www.eclipse.org/alf/schema/EventBase/1"
xmlns:s="http://www.eclipse.org/alf/schema/EventBase/1"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">hello</in>

</defaultNS1:NewOperation>
</env:Body>

</env:Envelope>

Using Dynamic Endpoints

SBM Composer provides the option of setting the endpoints for individual Web service
operations dynamically, when the orchestration workflow is run, to a URL returned by a
different Service step.

For example, a login Service step returns the URL of a server to be used for subsequent
Service steps. For each subsequent Service step, you can use the procedure below to
map the DynamicEndpointURL input to the server URL included in the output of the
login Service step.

To use dynamic endpoints:

1. Select an orchestration workflow to display it in the orchestration workflow editor.

2. Select a Service step for which you want to set a dynamic endpoint.

Part 1: Basic Orchestration Topics

94 Solutions Business Manager (SBM)

3. On the General tab of the Property Editor, make sure the Service step is associated
with a Web service and an operation.

4. Right-click the Service step in the orchestration workflow, and then select Use
Dynamic Endpoint.

This adds the DynamicEndpointURL step input to the Data Mapping tab of the
Property Editor. This data element can be used for the Service step and for any
other Service steps in the orchestration workflow that are associated with the same
Web service operation.

5. For each Service step to which the DynamicEndpointURL step input has been
added:

a. Select the Source elements column in the cell corresponding to the new
DynamicEndpointURL step input, and then click the down arrow.

b. In the Select a Source popup, select the URL to be used.

c. Click OK.

Note: You can return a Web service operation to using a static endpoint rather
than a dynamic endpoint. To do this, in the orchestration workflow editor, right-
click a Service step associated with the Web service operation, and then select
Use Dynamic Endpoint.

Running the StepPalette Process App

You are now ready to deploy and run the StepPalette process app.

To deploy and run the StepPalette process app:

1. Publish and deploy the StepPalette process app.

See Step 6: Publish the Process App [page 192] and Step 7: Deploy the Process App
[page 192] for instructions.

2. Log on to SBM Work Center.

3. Click the StepPaletteApp icon.

4. Click +New.

5. On the Browse tab, click the StepPaletteAppWF Project link.

The Submit transition form opens.

6. On the transition form, type The process apps in the Title box, and then click the OK
button.

The Calculate orchestration workflow is invoked, and it prepends the text in the Title
box of the State1 state form, which now contains The process apps are here.

7. On the State1 state form, click the Decision button.

The transition form between the State1 and State2 state forms opens.

8. On the transition form, delete the text in the Title box, type 1, 2, or any other text,
and then click the OK button.

SBM Orchestration Guide 95

The Decision orchestration workflow is invoked, and the results are displayed in the
Title box of the State2 state form. If you entered 1 in the Title box, then One is
displayed. If you entered 2, the Title box contains Two. And if you entered any other
text, the Title box contains Otherwise.

9. On the State2 state form, click the ForEach button.

The transition form between the State2 and State3 state forms opens.

10. On the transition form, delete the text in the Title box, type Results: and a space,
and then click the OK button.

The ForEach orchestration workflow is invoked, and the results are displayed in the
Title box of the State4 form. The Title box contains Results: One = 1 Two = 2
Three = 3 Four = 4 Five = 5.

11. On the State3 state form, click the While button.

The transition form between the State3 and State4 state forms opens.

12. Delete the text in the Title box, enter the word one zero to eight times, and then
click OK.

The While orchestration workflow is invoked, and the results are displayed in the
Title box of the State3 state form. If n is the number of times you entered one in
the Title box, I found n ones. is displayed.

13. On the State4 form, click the Service button.

The transition form between the State4 and State5 state forms opens.

14. On the transition form, click the OK button.

The Service orchestration workflow is invoked, and your login ID appears in the Title
box of the State5 state form.

Using the Group Step
The Group step is used to group steps logically. This can simplify large workflows because
a group of related steps can be organized in a collapsible group with a descriptive label.

The Group step provides no functionality, unlike the Scope step, which is used to group
steps and also handle faults that occur during Web service execution. It is recommended
that you use the Group step to organize steps that do not involve Web service execution;
if you use a Scope step to organize steps but do not include fault handling, validation
warnings will be sent.

Using the Scope, Throw, and Compensate Steps to
Handle Faults From Web Services
The Scope, Throw, and Compensate steps in SBM Composer graphically represent BPEL
fault-handling elements. You use these steps to handle Web service faults. This section
provides a brief overview of BPEL fault handling and how it is implemented in SBM
Composer.

Part 1: Basic Orchestration Topics

96 Solutions Business Manager (SBM)

Types of Web Service Faults
The two types of Web service faults are "named" faults and "generic" faults. A named fault
is associated with a specific fault situation, such as entering an incorrectly formatted user
name or attempting to withdraw money from a bank account that is inactive. A generic
fault is returned by a Web service if the service does not specify any named faults. Web
services return faults in SOAP messages that contain SOAP faults. (See About SOAP
Messages [page 36].)

If a Web service fault is not handled, or caught, it can stop the entire business process.
Unhandled Web service faults are the most common causes of orchestration workflow
failures. This section explains the various ways you can use the fault-handling components
in SBM Composer to keep your business processes flowing smoothly.

Scope Step
The Scope step lets you group related activities. It contains a FaultHandler section and
a CompensationHandler section. Scopes can be nested, that is, one scope can enclose
another scope. Orchestration workflows are contained within implicit, or global, scopes.

FaultHandler Section

If a Web service inside of a scope generates a SOAP fault or if an internal BPEL fault
occurs, the SBM Orchestration Engine checks whether a fault handler is defined for the
scope. The catch branch within the fault handler "catches" the faults so they can be
handled. The fault handler can contain an unlimited number of catch branches.

If the SBM Orchestration Engine finds a fault handler, it selects the catch branch with the
value that best matches the fault according to the following rules:

• You can right-click a Service step in a scope and select Add Catch Branches to
Scope to add a catch branch for each fault the step can throw. The SBM
Orchestration Engine selects the appropriate catch branch when the step throws a
fault.

• ServiceFlowFault is the only fault that a Throw step can throw. The catch branch
with ServiceFlowFault selected as the Fault name on the General tab of its
Property Editor is selected for Throw steps that have a Fault message displayed on
the General tab of the step Property Editor.

Important: If there are several Throw steps within the same Scope,
each one takes this branch, even if they have different Fault message
values.

• If no catch or catch all branches are selected, the fault is not caught and is thrown
back to the immediately enclosing scope.

CompensationHandler Section

The SBM Orchestration Engine invokes compensation handlers when there is a
Compensate step in the enclosing scope. You can use any steps in the Step Palette to
create a compensation handler. For an example, see Using the Compensate Step [page
124].

Throw Step
During the execution of an orchestration workflow, errors might prevent the workflow
from completing. For example, suppose you design an orchestration workflow that

SBM Orchestration Guide 97

transfers money between two accounts by invoking a few Web services. However, the first
Web service call returns an "invalid account number" fault.

The orchestration workflow stops, unless it contains some logic in the fault handler of the
scope that encloses the Web service. For example, you might want to inform the user that
he or she entered an invalid account number. The best way to do this by using the Throw
step to generate a custom error message such as "The account number you entered is not
valid. Please try again."

Orchestration Workflows as Web Services

An orchestration workflow itself is invoked as a Web service, although this Web service
can only be accessed by the SBM Application Engine. An orchestration workflow is invoked
in one of two modes: Request Only (EventNotice) or Request and Respond
(EventNoticeWithReply). EventNotice is used when an asynchronous orchestration
workflow is invoked, and EventNoticeWithReply is used when a synchronous orchestration
workflow is invoked.

A Web service could respond with a SOAP fault if something went wrong during its
execution. For each orchestration workflow that is invoked, a WSDL file is generated for its
corresponding Web service.

The following sample code is a EventNoticeWithReply Web service operation that is
defined in a WSDL file. It shows that the Web service for the orchestration workflow can
return a SOAP fault named ServiceFlowFault. All orchestration workflows can return, or
throw, a ServiceFlowFault. In fact, this is the only SOAP fault that they can throw.

<wsdl:operation name="EventNoticeWithReply">
<wsdl:input message="tns:XxxxxEventNoticeWithReply" />
<wsdl:output message="tns:XxxxxEventNoticeWithReplyResponse" />
<wsdl:fault name="ServiceFlowFault" message="tns:ServiceFlowFault" />
</wsdl:operation>

Why Use a Throw Step?

Use a Throw step when you want an orchestration workflow to explicitly signal an internal
fault. By inserting a Throw step in a synchronous orchestration workflow, you can do the
following:

1. Notify a user that the synchronous orchestration workflow encountered a problem
and cannot continue.

2. Together with a fault handler, notify a user that the invocation of a Web service
within this orchestration workflow returned a SOAP fault.

3. Immediately stop the execution of the scope that encloses the step.

4. Log the contents of the fault that is thrown by the Throw step and display it in the
Log Viewer.

If a Web service that is invoked within a synchronous orchestration workflow receives a
fault as a reply, the user of your process app does not see the fault message, unless you
provided a fault handler to catch the fault. Instead, he or she will see the following
generic error message: "An error occurred during the execution of the synchronous
orchestration workflow." If you want to display the fault message to the user, enclose the
Web service invocation within a scope, catch the fault that is thrown by the Web service,
and throw a ServiceFlowFault using a Throw step. See Using the Throw Step [page 120]
for more information.

Part 1: Basic Orchestration Topics

98 Solutions Business Manager (SBM)

If a Web service is invoked within an asynchronous orchestration workflow, you cannot
notify a user, as previously described in steps 1 and 2, because asynchronous
orchestration workflows do not return anything to the caller, which is the SBM Application
Engine. However, an asynchronous orchestration workflow can accomplish the tasks
described in items 3 and 4.

Note: Prior to adding a Throw step in an asynchronous orchestration, you must
define an Application Link in the corresponding Event Map for the orchestration.
Otherwise, the Throw Step will contain an empty "Fault Name" and "Fault
Message" and the fault cannot be used in the Scope's Fault Handler. This differs
for Throw steps in synchronous orchestrations because the event definition is
already created for the orchestration.

How to Use the Throw Step

The procedure for using a Throw step is described in Using the Throw Step [page 120].

If a Throw step is not enclosed within a scope with a fault handler, the whole workflow is
stopped after that step is executed. In addition, the content of its FaultString data
element is displayed to users if the orchestration workflow is synchronous.

If a Throw step is enclosed within a scope that has a fault handler, the fault handler can
catch the ServiceFlowFault that is thrown by the Throw step. To do this, you can use
either a Catch branch for a named fault or the CatchAll branch. After the
ServiceFlowFault is caught, you could use another Throw step to throw a new
ServiceFlowFault to the SBM Application Engine. The orchestration workflow that you
create in Using the Throw Step [page 120] demonstrates how to do this.

Summary

1. The only fault that can be thrown by a Throw step is ServiceFlowFault.

2. The content of the FaultString data element of the ServiceFlowFault is shown to
users if the fault is thrown within a synchronous orchestration workflow.

3. The content of the ServiceFlowFault is logged when the fault is thrown and can be
used during debugging.

4. After a Throw step is executed, the activity in the next enclosing scope is stopped.

Compensate Step
During the execution of an orchestration workflow, you might need to reverse, or
compensate, an activity that already completed. For example, say you design an
orchestration workflow that transfers money between two accounts by invoking a few Web
services. One Web service call in the orchestration workflow withdraws funds from the
first account and records the transaction. Another Web service call checks the status of
the second account and returns an "inactive account" fault. A third Web service call pays
back the funds to the first account because the second account is inactive.

SBM Orchestration Guide 99

An inner scope contains the Web service that withdraws funds. This scope has a
CompensationHandler that calls the Web service that pays back the funds. An outer scope
encloses the inner scope. The outer scope contains the Web service that checks whether
the second account is valid. The outer scope also contains a FaultHandler, in which a
proper Catch branch contains the Compensate step. When the "inactive account" fault is
caught, the Compensate step is executed.

Tip: You could also use a Throw step to generate a custom error message such
as "This account is inactive, so the transfer transaction could not be completed."

Note: You can only place a Compensate step in the FaultHandler or
CompensationHandler section of a scope.

Configuring a Compensate Step

When you configure the Compensate step, you can select the Default Scope or a specific
scope.

• If you select the Default Scope, the SBM Orchestration Engine checks all immediately
enclosed scopes that completed successfully to determine if they have compensation
handlers defined in them. If multiple scopes have completed successfully and all
have compensation handlers, these scopes are called one by one in reverse order,
that is, the one that completed last is called first. For example, scope "Scope"
immediately encloses scopes "Scope2" and "Scope3." If there is a Compensate step
in the CompensationHandler of scope "Scope," the SBM Orchestration Engine runs
the compensation handlers in scope "Scope3" and then in "Scope2," if they both
completed successfully. To change the order in which the scopes are called, you can
place more than one Compensate step in a CompensationHandler section.

• If you select a specific scope, the BPEL engine only checks that scope to determine if
it completed successfully and if it has a compensation handler defined in it. If it
completed successfully and has a compensation handler, the compensation handler
is called. The compensation handler in this scope can then call other scopes for
compensation if it designed to do so.

Part 1: Basic Orchestration Topics

100 Solutions Business Manager (SBM)

Figure 1. Enclosed Scopes

Tutorial: Creating a Practice Process App for Fault Handling
In this section, you create a new process app named FaultHandlingProcApp. You will use
this process app to practice using the Scope, Throw, and Compensate steps.

You can run the process app at any time after you create an application workflow and
deploy the process app. To run the application workflow (project), follow the instructions
in the relevant sections of Running the Fault Handling Process App [page 129].

To create the practice process app:

1. Start SBM Composer.

2. Click the Composer button, and then click New.

SBM Orchestration Guide 101

The Create New Process App dialog box opens.

3. Click Application Process App, and then click Create.

The Configure Process App dialog box opens.

4. In the Process app name and Application name boxes, type FaultHandlingProcApp,
and then click OK.

5. In App Explorer, click the All Items filter.

6. Under Tables, click FaultHandlingProcessApp.

7. In the Property Editor, change the Name to FaultHandlingPTable, and then press the
Tab key.

PTable stands for primary table.

8. In the System Fields section of the Table Palette, drag and drop a Description
field onto the FaultHandlingPTable (Primary) tab.

The Description field is added to the table, in alphabetical order. The Description
field will also be added to the state and transition forms. Information that is returned
by the orchestration workflows you create in this section is displayed in this field and
in the Title field.

9. In App Explorer, click FaultHandlingProcessApp.

10. On the FaultHandlingProcApp tab, change the Logical name to FaultHandlingApp,
and then press the Tab key.

11. Perform the following steps to create GenericFaultAWF:

a. In App Explorer, under Application Workflows, click FaultHandlingProcApp.

b. On the General tab of the Property Editor, change the Name to GenericFaultAWF,
and then press the Tab key.

c. In the application workflow editor, click the Submit transition.

d. On the General tab of the Property Editor, change the Name to VerifyUser, and
then press the Tab key.

e. Click the New state.

f. On the General tab of the Property Editor, change the Name to IsUserValid, and
then press the Tab key.

12. Perform the following steps to create NamedFaultAWF:

a. In App Explorer, right-click Application Workflows, and then click Add New
Workflow.

Under Application Workflows, FaultHandlingApp Workflow should be
selected.

b. On the General tab of the Property Editor, change the Name to NamedFaultAWF,
and then press the Tab key.

Part 1: Basic Orchestration Topics

102 Solutions Business Manager (SBM)

c. In the application workflow editor, click the Submit transition.

d. On the General tab of the Property Editor, change the Name to GetTickerSymbol,
and then press the Tab key.

e. Click the New state.

f. On the General tab of the Property Editor, change the Name to TickerSymbol,
and then press the Tab key.

g. In the States section of the Workflow Palette, drag Active onto the
application workflow editor and drop it to the right of the TickerSymbol state.

h. Change the Name to BuyRating, and then press the Tab key.

i. In the Transitions section of the Workflow Palette, drag Regular onto the
TickerSymbol state, release the mouse button, and then click BuyRating.

j. Change the name of the Transition to GetBuyRating, and then press the Tab key.

13. Perform the following steps to create ThrowAWF:

a. In App Explorer, right-click Application Workflows, and then select Add New
Workflow.

FaultHandlingAppWorkflow appears under NamedFaultAWF.

b. Click FaultHandlingAppWorkflow.

c. On the General tab of the Property Editor, change the Name to ThrowAWF, and
then press the Tab key.

d. In the States section of the Workflow Palette, drag Active onto the
orchestration workflow editor, and drop it to the right of the New state.

e. On the General tab of the Property Editor, change Name to TickerSymbol.

f. In the Transitions section of the Workflow Palette, drag Regular onto the
New state, release the mouse button, and then click the TickerSymbol state.

g. On the General tab of the Property Editor, change the Name to GetTickerSymbol.

14. Perform the following steps to create CompensateAWF:

a. In App Explorer, right-click Application Workflows, and then select Add New
Workflow.

FaultHandlingAppWorkflow appears under ThrowAWF.

b. Click FaultHandlingAppWorkflow.

c. On the General tab of the Property Editor, change the Name to CompensateAWF,
and then press the Tab key.

d. In the States section of the Workflow Palette, drag Active onto the
orchestration workflow editor, and drop it to the right of the New state.

e. On the General tab of the Property Editor, change Name to TickerSymbol.

SBM Orchestration Guide 103

f. In the Transitions section of the Workflow Palette, drag Regular onto the
New state, release the mouse button, and then click the TickerSymbol state.

g. On the General tab of the Property Editor, change the Name to DemoCompensate.

15. In App Explorer, right-click FaultHandlingProcessApp, point to Add New, and
then select Orchestration.

The New Orchestration dialog box opens.

16. In the Name box, type FaultHandlingOrch, and then click OK.

17. Perform the following steps to import the SerenaSampleTickerService:

a. In App Explorer, under FaultHandlingOrch, right-click Web Services, and then
select Add New Web Service.

The Web Service Configuration dialog box opens.

b. In the WSDL box, enter the following URL: http://serverName/Ticker/
services/SerenaSampleTickerService?wsdl

Note: In the SBM On-Demand environment, serverName is the URL
that you use to access Application Repository. For example, the server
name for Acme Company is
http://acme.admin.serenaprocessapps.com. In the on-premise
environment, serverName is the name of the server (or local machine)
that is running the Tomcat server. The serverName for most local
machines is localhost:8085.

c. Click OK.

SerenaSampleTickerService appears in App Explorer under Web Services.

18. Save the process app:

a. On the Quick Access Toolbar, click the Save locally button.

A message box opens reminding you that the design elements have been saved
to the Local Cache only.

b. Click OK.

Using the Scope Step
The Scope step includes a FaultHandler section and a CompensationHandler section.
The FaultHandler is for handling Web service (SOAP) faults. By default, it has a CatchAll
branch, which also catches faults generated by the BPEL engine. You can also add other
Catch branches. Each Catch branch can handle a specific named Web service fault.

You can optionally add a Throw step to the FaultHandler section and a Compensation
step to the CompensationHandler section. The Throw step is explained in Using the
Throw Step [page 120], and the CompensationHandler is covered in Using the
Compensate Step [page 124].

Procedure Summary

1. In App Explorer, select an orchestration workflow to display it in the orchestration
workflow editor.

Part 1: Basic Orchestration Topics

104 Solutions Business Manager (SBM)

2. In the New Items section of the Step Palette, drag a Scope step onto the
orchestration workflow editor, and drop it onto the line between the Start and End
steps.

You can change the name of the Scope step in the Property Editor, and you can also
add a description.

3. In the Step Palette, drag a Service step associated with a Web service onto the
orchestration workflow editor, and drop it into the Scope section.

4. If the Web service returns named faults, you can perform the following steps to
handle them:

a. Expand the FaultHandler section.

b. Add and configure Catch branches one at a time, or automatically add and
configure all Catch branches for a Web service operation.

• To add Catch branches one at a time:

1. Right-click the Fault Handler step, and then select Insert New Catch.

A new Catch branch appears above the CatchAll branch.

2. Select the new Catch branch.

3. On the General tab of the Property Editor, specify a Web service fault by
selecting it from the Fault name list. You can also change the name of
the Catch branch and provide a description.

Note: If there is an associated fault message, it is displayed in
the Fault message box as read-only. If there is no message,
the Fault message box is empty. See Rules for Configuring the
Catch Branch [page 119] for more information.

4. In the Step Palette, you can drag any steps that you want to use to
handle the fault into the Scope section and drop them onto the Catch
branch. Then configure the steps as required.

5. Repeat these steps to add and configure other Catch branches.

• To automatically add all Catch branches associated with a Web service
operation:

1. In the top section of the Scope step, right-click the Service step, and
then select Add Catch Branches to Scope.

Catch branches are automatically added to the FaultHandler section.

2. In the Step Palette, you can drag any steps that you want to use to
handle the faults into the Scope section and drop them onto a Catch
branch. Then configure the steps as required.

c. To handle faults that are not handled by the Catch branches, you can drag any
steps that you want to use to handle these faults into the Scope section and
drop them onto the CatchAll branch. Then configure the steps as required.

You cannot specify a fault name and a fault message for the CatchAll branch,
because it is invoked if none of the other branches can handle the fault.

SBM Orchestration Guide 105

5. If the Web service does not return named faults, perform the following steps to
handle the faults returned by the Web service:

a. Expand the FaultHandler section.

b. In the Step Palette, you can drag any steps that you want use to handle the
faults into the Scope section and drop them onto the CatchAll branch. Then
configure the steps as required.

Note: To hide the sections of the Scope step as you work on another part of
the orchestration workflow, click the minus sign to the left of the Scope step.

Tutorial: Creating An Empty Synchronous Orchestration Workflow to
Handle Generic Web Service Faults

In this exercise, you add an empty synchronous orchestration workflow to the
FaultHandlingOrch in the FaultHandlingProcApp.

To create an empty orchestration workflow that handles generic Web service
faults:

1. In App Explorer, under Application Workflows, click GenericFaultAWF.

2. In the application workflow editor, right-click the VerifyUser transition, and then
select Show Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard opens and asks, "Which type of action do you want to execute?"

Under Step 1, Orchestration Workflow should be selected.

4. Under Step 2, click the and continue executing (asynchronous) link, and then
select and wait for reply (synchronous).

5. Click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

6. Under Step 1, select After.

Step 2 should read Invoke an orchestration workflow and wait for reply
(synchronous), after this transition occurs.

7. Click Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

8. Under Step 1, select (Add new workflow...).

The Event with Reply dialog box opens.

9. In the Name box, type GenericFaultWFWR.

10. In the Workflow box, type GenericFaultOWF.

11. In the Fields used by event list, select the Title check box.

Part 1: Basic Orchestration Topics

106 Solutions Business Manager (SBM)

12. In the Fields returned by event list, select the Description and Title check
boxes.

13. Click OK.

Under Step 1, GenericFaultWFWR is selected on the menu and
EventNoticeWithReply appears in the list. Step 2 now reads Invoke an
orchestration workflow and wait for reply (synchrononous), after this
transition occurs | Call GenericFaultWFWR.EventNoticeWithReply.

14. Click Finish.

GenericFaultWFWR appears under Orchestration Links, and GenericFaultOWF
appears under Orchestration Workflows in App Explorer.

Tutorial: Practicing With the Scope Step to Handle Generic Web
Service Faults

In this exercise, you use a Scope step in the GenericFaultOWF orchestration workflow.

Note: Even though the SBM Application Engine actually returns a named fault,
for demonstration purposes, this exercise assumes that is does not.

After you complete the steps in this exercise, your orchestration workflow should look like
the one in the following figure:

Figure 1. GenericFaultOWF

Later, when you run the GenericFaultApp Project, you will alter this orchestration workflow
so it returns an error message in the Description field.

SBM Orchestration Guide 107

To use the Scope step in an orchestration workflow to handle generic Web
service faults:

1. In App Explorer, under Orchestration Workflows, click GenericFaultOWF.

2. Create a working data element of type String to hold the message that is passed to
the Description field as follows:

a. Click a blank area of the orchestration workflow editor.

b. On the Data Mapping tab of the Property Editor, under GenericFaultOWF,
right-click Working Data, select Add New, and then select String.

c. Change the name of the new data element (String) to Message.

3. In the New Items section of the Step Palette, drag a Scope step onto the
orchestration workflow editor, and drop it between the Start and End steps.

4. On the General tab of the Property Editor, change the Name to IsUserValidScope,
and then press the Tab key.

5. In the Configured Items section of the Step Palette, drag an sbmappservices72
Service step onto the orchestration workflow editor, and drop it onto the line inside
the top section of the Scope step.

6. On the General tab of the Property Editor, change the Name to VerifyUser.

7. From the Operation menu, select IsUserValid.

8. On the Data Mapping tab, locate the loginId data element, select the
corresponding cell in the Source elements column, and then click the down arrow.

9. In the Select a Source popup that opens, under GenericFaultOWF, Inputs,
EventNoticeWithReply, Extension; select Title; and then click OK.

10. In the Step Palette, drag a Decision step onto the orchestration workflow editor,
and drop it onto the line inside the top section of the IsUserValidScope step, to the
right of the VerifyUser step.

In steps 11 through 24, you configure this step to decide between two possible
outcomes: the user is valid or the user is not valid.

11. In the Property Editor, change the Name to IsUserValid, and then press the Tab key.

12. Right-click the IsUserValid step, and then select Insert New Branch.

13. On the General tab of the Property Editor, change the Name to Yes.

14. On the Options tab, in the Rule section, enter the following expression using the
expression editor: VerifyUser.IsUserValidResponse.return.
See About the Expression Editor [page 32].

15. In the Step Palette, drag a Calculate step onto the orchestration workflow editor,
and drop it onto the Yes branch.

16. On the General tab of the Property Editor, change the Name to
CreateValidUserMessage.

Part 1: Basic Orchestration Topics

108 Solutions Business Manager (SBM)

17. On the Options tab, in the Target section, enter the following using the expression
editor: Message.

18. In the Expression section, type: "This user is valid."
Be sure to include the quotation marks.

19. Select the Otherwise branch.

20. On the General tab of the Property Editor, change the Name to No, and then press
the Tab key.

21. In the Step Palette, drag a Calculate step onto the orchestration workflow editor,
and drop it onto the No branch.

22. On the General tab of the Property Editor, change the Name to
CreateInvalidUserMessage.

23. On the Options tab, in the Target section, enter the following using the expression
editor: Message

24. In the Expression section, type "This user is not valid."
Be sure to include the quotation marks.

25. Select the End step.

26. On the Data Mapping tab, under Extension, locate the Description data element,
select the corresponding Source elements column, and then click the down arrow.

27. In the Select a Source popup that opens, under GenericFaultOWF,
WorkingData; select Message; and then click OK.

28. Expand the FaultHandler section of the IsUserValidScope step.

29. In the Step Palette, drag a Calculate step into the FaultHandler section and drop
it onto the CatchAll branch.

30. On the General tab of the Property Editor, change the Name to
CreateUnknownErrorMessage.

31. On the Options tab, in the Target section, enter the following using the expression
editor: Message.

32. In the Expression section, type "An unknown error occurred at
GenericFaultAWF_GenericFaultOWF_VerifyUser."
Be sure to include the quotation marks.

33. On the Quick Access Toolbar, click the Validate button.

The following two warning messages appear in the Validation Results:

• The required DefaultElement 'GenericFaultOWF\Message' is not mapped
or defaulted in 'GenericFaultOWF'

SBM Orchestration Guide 109

This message warns you that you did not provide a value for the Message
working data element. You can ignore the message, or you can set the default
value to 0 (zero) to prevent the message from appearing.

• Compensation handler is empty.

You can ignore this message, because a compensation handler is not required for
this orchestration workflow.

34. Publish and deploy the FaultHandlingProcApp.

See Step 6: Publish the Process App [page 192] and Step 7: Deploy the Process App
[page 192] for instructions.

35. Turn on debug logging as follows:

a. On the Home tab of the Ribbon, in the Common Views group, select the
Common Log Viewer check box.

b. On the Overview tab of the Common Log Viewer, right-click
FaultHandlingApp, and then select Debug Logging.

c. Right-click FaultHandlingOrch, and then select Debug Logging.

Tutorial: Creating An Empty Synchronous Orchestration Workflow for
the Scope Step to Handle Named Faults

In this exercise, you add an empty synchronous orchestration workflow to the
FaultHandlingOrch in the FaultHandlingProcApp.

To create an empty orchestration workflow that handles named Web service
faults:

1. In App Explorer, under Application Workflows, click NamedFaultAWF.

2. In the application workflow editor, right-click the GetTickerSymbol transition, and
then select Show Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard opens and asks, "Which type of action do you want to execute?"

Under Step 1, Orchestration Workflow should be selected.

4. Under Step 2, click the and continue executing (asynchronous) link, and then
select and wait for reply (synchronous).

5. Click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

6. Under Step 1, select After.

Step 2 should read Invoke an orchestration workflow and wait for reply
(synchronous), after this transition occurs.

7. Click Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

Part 1: Basic Orchestration Topics

110 Solutions Business Manager (SBM)

8. Under Step 1, select (Add new workflow...).

The Event With Reply dialog box opens.

9. In the Name box, type NamedFaultWFWR1.

10. In the Workflow box, type NamedFaultOWF1.

11. In the Fields used by event list, select the Title check box.

12. In the Fields returned by event list, select the Description and Title check
boxes.

13. Click OK.

Under Step 1, NamedFaultWFWR1 is selected on the menu and
EventNoticeWithReply appears in the list. Step 2 now reads Invoke an
orchestration workflow and wait for reply (synchronous), after this
transition occurs, Call NamedFaultWFWR1.

14. Click Finish.

NamedFaultWFWR1 appears below GenericFaultWFWR under Orchestration
Links, and NamedFaultOWF1 appears below GenericFaultOWF under
Orchestration Workflows in App Explorer.

Tutorial: Practicing With the Scope Step to Handle Named Web
Service Faults

In this exercise, you use a Scope step in the NamedFaultOWF1 orchestration workflow.

SBM Orchestration Guide 111

After you complete the steps in this exercise, your orchestration workflow should look like
the one in the following figure:

Figure 1. NamedFaultOWF1

To use the Scope step in an orchestration workflow that handles named Web
service faults:

1. Under Orchestration Workflows, click NamedFaultOWF1.

2. Create a working data element of type String to hold the message that is passed to
the Description field as follows:

a. Click a blank area of the orchestration workflow editor.

b. On the Data Mapping tab of the Property Editor, under NamedFaultOWF1,
right-click Working Data, select Add New, and then select String.

c. Change the name of the new data element (String) to Message.

3. In the New Items section of the Step Palette, drag a Scope step onto the
orchestration workflow editor, and drop it between the Start and End steps.

4. Change the name of the Scope step to GetTickerSymbolScope, and then press the Tab
key.

5. In the Configured Items section of the Step Palette, drag a
SerenaSampleTickerService Service step onto the orchestration workflow editor,
and drop it onto the line inside the top section of the GetTickerSymbolScope step.

Part 1: Basic Orchestration Topics

112 Solutions Business Manager (SBM)

6. On the General tab of the Property Editor, change the Name to GetTickerSymbol.

7. From the Operation menu, select GetTickerSymbol.

8. On the Data Mapping tab, locate the company data element, select the
corresponding cell in the Source elements column, and then click the down arrow.

9. In the Select a Source popup that opens, under NamedFaultOWF1, Inputs,
EventNoticeWithReply, Extension; select Title; and then click OK.

10. In the New Items section of the Step Palette, drag a Calculate step onto the
orchestration workflow editor, and drop it onto the line inside the top section of the
GetTickerSymbolScope step, to the right of the GetTickerSymbol step.

11. On the General tab of the Property Editor, change the Name to ReturnTickerSymbol.

12. On the Options tab, in the Target section, enter the following using the expression
editor: EventNoticeWithReply\Extension\Title.
See About the Expression Editor [page 32].

13. In the Expression section, enter the following expression using the expression
editor: GetTickerSymbol\GetTickerSymbolResponse\GetTickerSymbolResult.

14. Select the End step.

15. On the Data Mapping tab, under Extension, locate the Title data element, select
the corresponding cell in the Source elements column, and then click the down
arrow.

16. In the Select a source popup that opens, under NamedFaultOWF1, Inputs,
EventNoticeWithReply, Extension; select Title; and then click OK.

17. On the Data Mapping tab, under Extension, locate the Message data element,
select the corresponding cell in the Source elements column, and then click the
down arrow.

18. In the Select a source popup that opens, under NamedFaultOWF1,
WorkingData; select Message; and then click OK.

19. Expand the FaultHandler section of the GetTickerSymbolScope step.

20. Right-click the Throw step, and then select Insert New Catch.

21. On the General tab of the Catch branch, select SerenaSampleTickerService-
GetTickerSymbolFault on the Fault Name menu.

SerenaSampleTickerService-GetTickerSymbolFault is automatically inserted in
the Fault message box and is read-only.

22. In the New Items section of the Step Palette, drag a Calculate step into the
FaultHandler section, and drop it onto the Catch branch.

23. On the General tab of the Property Editor, change the Name to
ReturnGetTickerSymbolFault.

SBM Orchestration Guide 113

24. On the Options tab, in the Target section, enter the following using the expression
editor: Message.

25. In the Expression section, enter the following expression using the expression
editor: Catch\GetTickerSymbolFault\detail.

Note: For this step, you must first type Catch followed by a period. Then
you can use the expression editor to complete the expression. Also, any
time you rename a Catch branch, you must use the new name in the
expression.

26. In the New Items section of the Step Palette, drag a Calculate step into the
FaultHandler section of the GetTickerSymbolScope step, and drop it onto the
CatchAll branch.

27. On the General tab of the Property Editor, change the Name to
CreateUnknownErrorMessage.

28. On the Options tab, in the Target section, enter the following using the expression
editor: Message.

29. In the Expression section, type "An unknown error occurred at
NamedFaultAWF_NamedFaultOWF1_GetTickerSymbol."
Be sure to include the quotation marks.

30. On the Quick Access Toolbar, click the Validate button.

The following two warning messages appear in the Validation Results:

• The required DefaultElement 'NamedFaultOWF1\Message' is not mapped
or defaulted in 'NamedFaultOWF1'

This message warns you that you did not provide a value for the Message
working data element. You can ignore the message, or you can set the default
value to 0 (zero) to prevent the message from appearing.

• Compensation handler is empty.

You can ignore this message, because a compensation handler is not required for
this orchestration workflow.

31. Publish and deploy the FaultHandlingProcApp.

See Step 6: Publish the Process App [page 192] and Step 7: Deploy the Process App
[page 192] for instructions.

Tutorial: Creating an Empty Synchronous Orchestration Workflow for
Automatically Adding Catch Branches for Named Faults

In this exercise, you add an empty synchronous orchestration workflow to the
FaultHandlingOrch in the FaultHandlingProcApp.

To create an empty orchestration workflow for automatically adding Catch
branches for named faults:

1. In App Explorer, under Application Workflows, click NamedFaultAWF.

Part 1: Basic Orchestration Topics

114 Solutions Business Manager (SBM)

2. In the application workflow editor, right-click the GetBuyRating transition, and then
select Show Actions on the menu.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard opens and asks, "Which type of action do you want to execute?"

Under Step 1, Orchestration Workflow should be selected.

4. Under Step 2, click the and continue executing (asynchronous) link, and then
select and wait for reply (synchronous).

5. Click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

6. Under Step 1, select After.

Step 2 should read Invoke an orchestration workflow and wait for reply
(synchronous), after this transition occurs.

7. Click Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

8. Under Step 1, select (Add new workflow...). The Event With Reply dialog box
opens.

9. In the Name box, type NamedFaultWFWR2.

10. In the Workflow box, type NamedFaultOWF2.

11. In the Fields used by event list, select the Description and Title check boxes.

12. In the Fields returned by event list, select the Description and Title check
boxes.

13. Click OK.

Under Step 1, NamedFaultWFWR2 is selected on the menu and
EventNoticeWithReply appears in the list. Step 2 now reads Invoke an
orchestration workflow and wait for reply (synchronous), after this
transition occurs, Call NamedFaultWFWR2.EventNoticeWithReply.

14. Click Finish.

NamedFaultWFWR2 appears below NamedFaultWFWR1 under Orchestration
Links, and NamedFaultOWF2 appears below NamedFaultOWF1 under
Orchestration Workflows in App Explorer.

Tutorial: Practicing Automatically Adding Catch Branches for Named
Faults

In this exercise, you use a Scope step in the NamedFaultOWF2 orchestration workflow
and you add Catch branches to its FaultHandler section automatically.

SBM Orchestration Guide 115

After you complete the steps in this exercise, your orchestration workflow should look like
the one in the following figure:

Figure 1. NamedFaultOWF2

To automatically add Catch branches for named Web service faults:

1. Under Orchestration Workflows, click NamedFaultOWF2.

2. Create a working data element of type String to hold the message that is passed to
the Description field as follows:

a. Click a blank area of the orchestration workflow editor.

b. On the Data Mapping tab of the Property Editor, under NamedFaultOWF2,
right-click Working Data, select Add New, and then select String.

Part 1: Basic Orchestration Topics

116 Solutions Business Manager (SBM)

c. Change the name of the new data element (String) to Message.

3. In the New Items section of the Step Palette, drag a Scope step onto the
orchestration workflow editor, and drop it between the Start and End steps.

4. Change the name of the Scope step to GetBuyRatingScope, and then press the Tab
key.

5. In the Configured Items section of the Step Palette, drag a
SerenaSampleTickerService Service step onto the orchestration workflow editor,
and drop it onto the line inside the top section of the GetBuyRatingScope step.

6. On the General tab of the Property Editor, change the Name to GetBuyRating.

7. From the Operation menu, select GetBuyRating.

8. On the Data Mapping tab, locate the symbol data element, select the
corresponding cell in the Source elements column, and then click the down arrow.

9. In the Select a Source popup that opens, under NamedFaultOWF2, Inputs,
EventNoticeWithReply, Extension; select Title; and then click OK.

10. In the New Items section of the Step Palette, drag a Calculate step onto the
orchestration workflow editor, and drop it onto the line inside the top section of the
GetBuyRatingScope step, to the right of the GetBuyRating step.

11. On the General tab of the Property Editor, change the Name to ReturnBuyRating.

12. On the Options tab, in the Target section, enter the following using the expression
editor: Message.
See About the Expression Editor [page 32].

13. In the Expression section, enter the following expression using the expression
editor: GetBuyRating.GetBuyRatingResponse.GetBuyRatingResult.

14. Select the End step.

15. On the Data Mapping tab, under Extension, locate the Description data element,
select the corresponding cell in the Source elements column, and then click the
down arrow.

16. In the Select a source popup that opens, under NamedFaultOWF2,
WorkingData; select Message; and then click OK.

17. Expand the FaultHandler section of the GetBuyRatingScope step.

18. In the top section of the GetBuyRatingScope step, right-click the GetBuyRating
step, and then select Add Catch Branches to GetBuyRatingScope.

SBM Orchestration Guide 117

SBM Composer scans the SerenaSampleTickerService WSDL for any named faults
defined for the GetBuyRating operation and adds the following three Catch
branches to the FaultHandler section: CatchUnknownTickerSymbolFault,
CatchInvalidInputFault, and CatchGetBuyRatingFault.

Note: If the Web service operation does not return any named faults, the
Add Catch Branches to Scope option is not available.

19. Select each Catch branch, and note on the General tab of the Property Editor that
the Fault name and Fault message are automatically configured.

20. In the New Items section of the Step Palette, drag a Calculate step into the
FaultHandler section, and drop it onto the CatchUnknownTickerSymbolFault
branch.

21. On the General tab of the Property Editor, change the Name to
ReturnUnknownTickerSymbolFault.

22. On the Options tab, in the Target section, enter the following using the expression
editor: Message

23. In the Expression section, enter the following expression using the expression
editor: CatchUnknownTickerSymbolFault\UnknownTickerSymbolFault\detail
You can use errorCode rather than detail if you specified a decision based on the
error code.

Note: For this step, you must first type CatchUnknownTickerSymbolFault
followed by a period. Then you can use the expression editor to complete
the expression. Also, any time you rename a Catch branch, you must use
the new name in the expression.

24. In the New Items section of the Step Palette, drag a Calculate step into the
FaultHandler section, and drop it onto the CatchInvalidInputFault branch.

25. On the General tab of the Property Editor, change the Name to
ReturnInvalidInputFault.

26. On the Options tab, in the Target section, enter the following using the expression
editor: Message.

27. In the Expression section, enter the following expression using the expression
editor: CatchInvalidInputFault\InvalidInputFault.

Note: For this step, you must first type CatchInvalidInputFault followed by
a period. Then you can use the expression editor to complete the
expression.

28. In the New Items section of the Step Palette, drag a Calculate step into the
FaultHandler section, and drop it onto the CatchGetBuyRatingFault branch.

29. On the General tab of the Property Editor, change the Name to
ReturnGetBuyRatingFault.

30. On the Options tab, in the Target section, enter the following using the expression
editor: Message.

Part 1: Basic Orchestration Topics

118 Solutions Business Manager (SBM)

31. In the Expression section, enter the following expression using the expression
editor: CatchGetBuyRatingFault\GetBuyRatingFault\detail.
You can use errorCode rather than detail if you created a system that correlates the
message detail with the error code.

Note: For this step, you must first type CatchGetBuyRatingFault followed by
a period. Then you can use the expression editor to complete the
expression. Also, any time you rename a Catch branch, you must use the
new name in the expression.

32. In the New Items section of the Step Palette, drag a Calculate step into the
FaultHandler section of the GetBuyRatingScope step, and drop it onto the
CatchAll branch.

33. On the General tab of the Property Editor, change the Name to
CreateUnknownErrorMessage.

34. On the Options tab, in the Target section, enter the following using the expression
editor: Message.

35. In the Expression section, type: "An unknown error occurred at
NamedFaultAWF_NamedFaultOWF2_GetBuyRating"
Be sure to include the quotation marks.

36. On the Quick Access Toolbar, click the Validate button.

The following warning messages appear in the Validation Results:

• The required DefaultElement 'NamedFaultOWF2\Message' is not mapped
or defaulted in 'NamedFaultOWF2'

This message warns you that you did not provide a value for the Message
working data element. You can ignore the message, or you can set the default
value to 0 (zero) to prevent the message from appearing.

• Compensation handler is empty

You can ignore this message, because a compensation handler is not required for
this orchestration workflow.

• The required DataElement 'GetBuyRating\GetBuyRating\type' is not
mapped or defaulted in 'NamedFaultOWF2

You can ignore this message.

37. Publish and deploy the FaultHandlingProcApp.

See Step 6: Publish the Process App [page 192] and Step 7: Deploy the Process App
[page 192] for instructions.

Rules for Configuring the Catch Branch

When you configure a Catch branch, you specify a fault name, a fault message, or both.
Before you can determine which item or items to choose, you need to know how the Web
service that you are invoking returns faults. This information is usually provided in the
Web service documentation.

SBM Orchestration Guide 119

In SBM Composer, the rules are applied as follows:

• If the Web service returns a fault with no associated message, after you select a
Fault name, the Fault message box is empty.

• If the Web service returns a fault with a name and an associated message, after you
select a Fault name, the name of the associated message is displayed in the Fault
message box. The message is read-only.

Using the Throw Step
You use the Throw step to return a fault named ServiceFlowFault in an orchestration
workflow.

Procedure Summary

1. In App Explorer, select an orchestration workflow to display it in the orchestration
workflow editor.

2. In the New Items section of the Step Palette, drag a Throw step onto the
orchestration workflow editor, and drop it wherever you want to throw a
ServiceFlowFault.

3. On the General tab of the Property Editor, you can change the name of the Throw
step and provide a description.

4. On the Data Mapping tab, you can enter an optional fault code in the Default
column of the FaultCode data element.

You can use the fault code as a short way to represent a long fault string.

5. Still on the Data Mapping tab, you can provide a value for the FaultString data
element. You can map a value in the Source elements column, or you can enter a
String value, such as a message, in the Default value column.

Tutorial: Creating an Empty Synchronous Orchestration Workflow for
the Throw Step

In this exercise, you add an empty synchronous orchestration workflow to the
FaultHandlingOrch in the FaultHandlingProcApp.

To create an empty synchronous orchestration workflow that uses the Throw
step:

1. In App Explorer, under Application Workflows, click ThrowAWF.

2. In the application workflow editor, right-click the GetTickerSymbol transition, and
then select Show Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard opens and asks, "Which type of action do you want to execute?"

Under Step 1, Orchestration Workflow should be selected.

4. Under Step 2, click the and continue executing (asynchronous) link, and then
select and wait for reply (synchronous).

5. Click Next.

Part 1: Basic Orchestration Topics

120 Solutions Business Manager (SBM)

The Action Wizard asks, "When do you want to call the orchestration workflow?"

6. Under Step 1, select After.

Step 2 should read Invoke an orchestration workflow and wait for reply
(synchronous), after this transition occurs.

7. Click Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

8. Under Step 1, select (Add new workflow…).

The Event With Reply dialog box opens.

9. In the Name box, type ThrowWFWR.

10. In the Workflow box, type ThrowOWF.

11. In the Fields used by event list, select the Title check box.

12. In the Fields used by event list, select the Description and Title check boxes.

13. Click OK.

Under Step 1, ThrowWFWR is selected on the menu and EventNoticeWithReply
is selected in the list. Step 2 now reads Invoke an orchestration workflow and
wait for reply (synchronous), after this transition occurs, Call ThrowWFWR.

14. Click Finish.

ThrowWFWR appears below NamedFault2WRWR under Orchestration Links,
and ThrowOWF appears below NameFault2OWF under Orchestration
Workflows in App Explorer.

Tutorial: Practicing With the Throw Step

In this exercise, you use a Scope step in the NamedFaultOWF2 orchestration workflow
and add Catch branches to its FaultHandler section automatically.

SBM Orchestration Guide 121

After you complete the steps in this exercise, your orchestration workflow should look like
the one in the following figure:

Figure 1. ThrowOWF

To use the Throw step in an orchestration workflow that throw custom and
named faults:

1. In App Explorer, under Orchestration Workflows, click ThrowOWF.

2. In the New Items section of the Step Palette, drag a Decision step onto the
orchestration workflow editor, and drop it onto the line between the Start and End
steps.

In steps 3 through 10, you configure this step to decide between two possible
outcomes: the company is Bluejay Bird Supply or the company is not Bluejay Bird
Supply.

3. On the General tab of the Property Editor, change the Name to IsCompanyBluejay.

4. Right-click the IsCompanyBluejay step, and then select Insert New Branch.

5. On the General tab of the Property Editor, change the Name to IsBluejay.

6. On the Options tab of the Property Editor, enter the following expression in the
Rule section using the expression editor:
EventNoticeWithReply\Extension\Title="Bluejay Bird Supply"
See About the Expression Editor [page 32].

7. In the Step Palette, drag a Throw step onto the orchestration workflow editor and
drop it on the IsBluejay branch.

Part 1: Basic Orchestration Topics

122 Solutions Business Manager (SBM)

This step is used to show an error message to users when the Title field contains
"Bluejay Bird Supply." It is also used to display an optional error code that is not
shown to users, but can be used, for example, for debugging purposes.

8. On the General tab of the Property Editor, change the Name to ReportBluejay, and
then press the Tab key.

9. On the Data Mapping tab, locate the FaultCode data element and enter the
following in the corresponding cell of the Default value column: ERROR-BLUEJAY.

10. Locate the FaultString data element, and enter the following in the corresponding
Default value column: Bluejay Bird Supply is a credit risk.

11. In the New Items section of the Step Palette, drag a Scope step onto the
orchestration workflow editor, and drop it between the ReportBluejay and End
steps.

This step is used to enclose the GetTickerSymbol Web service operation and to
catch any faults that it generates.

12. On the General tab of the Property Editor, change the Name to
GetTickerSymbolScope.

13. In the Configured Items section of the Step Palette, drag a
SerenaSampleTickerService step into the top section of the
GetTickerSymbolScope step, and drop it. This step is used to get the ticker
symbol for the company name passed from the Title field, or to return a fault for all
other company names except Bluejay Bird Supply (see step 4).

14. On the General tab of the Property Editor, change the Name to GetTickerSymbol.

15. On the Operation menu, select GetTickerSymbol.

16. On the Data Mapping tab, locate the company data element, select the
corresponding cell in the Source elements column, and then click the down arrow.

17. In the Select a Source popup that opens, under ThrowOWF, Inputs,
EventNoticeWithReply, Extension; select Title; and then click OK.

18. Expand the FaultHandler section.

19. Right-click the Fault Handler step, and then select Insert New Catch.

This Catch branch handles the SerenaSampleTickerService-GetTickerSymbolFault.
All other faults generated by the GetTickerSymbol step are handled by the
CatchAll branch.

20. On the General tab of the Property Editor for the Catch branch, change the Name
to GetTickerSymbolFault.

21. Select SerenaSampleTickerService-GetTickerSymbolFault on the Fault Name
menu.

SerenaSampleTickerService-GetTickerSymbolFault is automatically inserted in
the Fault message box and is read-only.

SBM Orchestration Guide 123

22. In the Step Palette, drag a Throw step into the FaultHandler section and drop it
onto the GetTickerSymbolFault branch.

This step is used to return a customized fault message. It is also used to generate
an optional error code.

23. On the General tab of the Property Editor, change the Name to
ReturnGetTickerSymbolFault.

24. On the Data Mapping tab, locate the FaultCode data element and enter the
following in the corresponding cell in the Default value column: ERROR-SYSTEM.

25. Locate the FaultString data element, select the corresponding cell in the Source
elements column, and then click the down arrow.

26. In the Select a Source popup that opens, under ThrowOWF,
GetTickerSymbolFault, Outputs, GetTickerSymbolFault; select detail; and
then click OK.

27. Select the End step.

The contents of the Title field are passed to the End step. This step is used to
display a valid ticker symbol in the Description field. Although Bluejay Bird Supply
is listed in the SerenaSampleTickerService, its symbol is not returned because it was
caught by the ReportBluejay Throw step.

28. On the Data Mapping tab, under Extension, locate the Description data element,
select the corresponding cell in the Source elements column, and then click the
down arrow.

29. In the Select a Source popup that opens, under GetTickerSymbol, Outputs,
GetTickerSymbolResponse; select GetTickerSymbolResult; and then click OK.

30. On the Quick Access Toolbar, click the Validate button.

The following a warning message appears in the Validation Results: Compensation
handler is empty.

You can ignore this message, because a compensation handler is not required for
this orchestration workflow.

31. Publish and deploy the FaultHandlingProcApp.

See Step 6: Publish the Process App [page 192] and Step 7: Deploy the Process App
[page 192] for instructions.

Using the Compensate Step
You use the Compensate step to reverse, or undo, the operations in an enclosed scope
that already completed.

Procedure Summary

1. In App Explorer, select an orchestration workflow that with nested Scope steps.

2. If necessary, expand the outermost Scope step so that all sections are visible.

Part 1: Basic Orchestration Topics

124 Solutions Business Manager (SBM)

3. In the Step Palette, drag a Compensate step onto the orchestration workflow
editor and drop it in the FaultHandler or CompensationHandler section of the
outermost Scope step.

If you want to compensate for a specific named fault only, place the Compensate
step in a FaultHandler section with a named fault. Otherwise, place the
Compensate step in the CompensationHandler section.

4. In the Property Editor of the Compensate step, select the Scope to be
compensated. You can also enter a description.

5. To specify the compensation actions, add other steps from the Step Palette to the
CompensationHandler section, to the right of the Compensate step.

6. If you are using nested scopes, you can use a Throw step to pass a fault from any
inner scopes to an outer scope.

Tutorial: Creating an Empty Asynchronous Orchestration Workflow for
the Compensate Step

You use the Compensate step in combination with nested Scope steps. The Web services
or actions defined in the Compensate step should compensate or roll back whatever was
done in the main part of the inner nested Scope step. This is particularly useful if these
actions have taken some time to complete.

In this exercise, you add an empty asynchronous orchestration workflow to the
FaultHandlingOrch in the FaultHandlingProcApp.

To create an empty asynchronous orchestration workflow that uses the
Compensate step:

1. In App Explorer, under Application Workflows, click CompensateAWF.

2. In the application workflow editor, right-click the DemoCompensate transition, and
then select Show Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard opens and asks, "Which type of action do you want to execute?"

Under Step 1, Orchestration Workflow should be selected and Step 2 should
read Invoke and orchestration workflow and continue executing
(asynchronous) using the local event.

4. Click Next.

The Action Wizard asks, "What do you want to affect?"

Under Step 1, This item should be selected and Step 2 should read Invoke an
orchestration workflow and continue executing (asynchronous) using the
local event, affect this item.

5. Click Next.

The Action Wizard asks, "Which condition do you want to check?"

Under Step 1, Unconditionally should be selected and Step 2 should still read
Invoke an orchestration workflow and continue executing (asynchronous)
using the local event, affect this item.

SBM Orchestration Guide 125

6. Click Next.

The Action Wizard asks, "Which orchestration workflow to you want to invoke?"

7. Under Step 1, select (Add new workflow…).

NewDemoCompensateWorkflow appears under Step 1 and should be selected.
Step 2 should read Invoke an orchestration workflow and continue executing
(asynchronous) using the local event, affect this item | invoke event
(FaultHandlingPTable:CompensateAWF_New_DemoCompensate).

SubmitGetTickerSymbolWorkflow appears below ThrowSyncOWF under
Orchestration Workflows in App Explorer.

8. Click Finish.

9. Click NewDemoCompensateWorkflow, and then, on the General tab of the
Property Editor, change the Name to CompensateOWF.

Tutorial: Practicing with the Compensate Step

In this exercise, you use a Compensate step in the CompensateOWF orchestration
workflow.

Note: For this tutorial, the purpose of the SerenaSampleTickerService Web
service is to return a named fault, not to get the results of any of its operations.

Part 1: Basic Orchestration Topics

126 Solutions Business Manager (SBM)

After you complete the steps in this exercise, your orchestration workflow should look like
the one in the following figure:

Figure 1. CompensateOWF

To use the Compensate step in an asyncronous orchestration workflow:

1. In App Explorer, select CompensateOWF.

2. In the New Items section of the Step Palette, drag a Scope step onto the
orchestration workflow editor, and drop it onto the line between the Start and End
steps.

3. On the General tab of the Property Editor, change the Name to OuterScope, and
then press the Tab key.

4. In the New Items section of the Step Palette, drag a Scope step onto the
orchestration workflow editor, and drop it inside the top section of the OuterScope
step.

SBM Orchestration Guide 127

5. On the General tab of the Property Editor, change the Name to UpdateTitleScope.

6. In the Configured Items section of the Step Palette, drag an sbmappservices72
Service step into the UpdateTitleScope step, and drop in the top section.

7. On the General tab of the Property Editor, change the Name to UpdateTitle.

8. From the Operation menu, select TransitionItem.

9. On the Data Mapping tab, expand item, id; locate the tableIdItemId data
element; select the corresponding cell in the Source elements column; and then
click the down arrow.

10. In the Select a source popup that opens, under CompensateOWF, Inputs,
EventNotice, Extension; select ItemId_TableRecId; and then click OK.

11. Locate the title data element, and enter the following in the corresponding cell in
the Default value column: Updated by CompensationOWF.

12. Expand the CompensationHandler of the UpdateTitleScope step.

13. In the Configured Items section of the Step Palette, drag an sbmappservices72
Service step into the CompensationHandler of the UpdateTitleScope step.

14. On the General tab of the Property Editor, change the Name to ResetTitle.

15. From the Operations menu, select TransitionItem.

16. On the Data Mapping tab, expand item, expand id; locate the tableIdItemid data
element; select the corresponding cell in the Source elements column; and then
click the down arrow.

17. In the Select a source popup that opens, under CompensateOWF, Inputs,
EventNotice, Extension; select ItemId_TableRecId; and then click OK.

18. Locate the description data element, and enter the following in the corresponding
Default value column: Returning Title field to its original value.

19. Collapse the UpdateTitleScope step.

20. In the New Items section of the Step Palette, drag a Scope step into the top
section of the OuterScope step, and drop it on the right of the UpdateTitleScope
step.

21. On the General tab of the Property Editor, change the Name to
GetTickerSymbolScope.

22. In the Configured Items section of the Step Palette, drag a
SerenaSampleTickerService Service step into the top section of the
GetTickerSymbolScope step.

23. On the General tab of the Property Editor, change the Name to GetTickerSymbol.

24. On the Operation menu, select GetTickerSymbol.

Part 1: Basic Orchestration Topics

128 Solutions Business Manager (SBM)

25. On the Data Mapping tab, locate the company data element; select the
corresponding cell in the Source elements column; and then click the down arrow.

26. In the Select a source popup that opens, under CompensateOWF, Inputs,
EventNotice, Extension; select Title; and then click OK.

27. Expand the FaultHandler section of the GetTickerSymbolScope step.

28. Right-click the Fault Handler step, and then select Insert New Catch.

29. Select SerenaSampleTickerService-GetTickerSymbolFault from the Fault
name list.

30. On the General tab of the Property Editor, change the Name to
GetTickerSymbolFault.
SerenaSampleTickerService-GetTickerSymbolFault automatically appears in
the Fault message box.

31. In the New Items section of the Step Palette, drag a Throw step into the
FaultHandler section of the GetTickerSymbolScope step, and drop it onto the
GetTickerSymbolFault branch.

32. On the Data Mapping tab, locate the FaultString data element, select the
corresponding cell in the Source elements column; and then click the down arrow.

33. In the Select a source popup that opens, under GetTickerSymbolFault, Outputs,
GetTickerSymbolFault; select detail; and then click OK.

34. Expand the FaultHandler section of the OuterScope step.

35. In the New Items section of the Step Palette, drag a Compensate step into the
FaultHandler section, and drop it onto the CatchAll branch.

On the General tab of the Property Editor, the Scope should be [Default Scope].

36. On the Quick Access Toolbar, click the Validate button.

The following warning message appears in the Validation Results: Compensation
handler is empty.

You can ignore this message, because a compensation handler is not required for
this orchestration workflow.

37. Publish and deploy the FaultHandlingProcApp.

See Step 6: Publish the Process App [page 192] and Step 7: Deploy the Process App
[page 192] for instructions.

Running the Fault Handling Process App
This section contains exercises for running the various FaultHandlingProcApp projects
(application workflows). The steps in each tutorial are correlated with the way elements in
the orchestration workflows and the application workflows interact.

Following is a list of the tutorials in this section.

• SerenaSampleTickerService Company Names and Ticker Symbols [page 130]

SBM Orchestration Guide 129

• Tutorial: Running the GenericFaultAWF Project [page 130]

• Tutorial: Altering the GenericFaultOWF to Return a Web Service Fault [page 131]

• Tutorial: Running the GenericFaultAWF Project and Invoking the CatchAll Branch
[page 131]

• Tutorial: Running the NamedFaultAWF Project and Invoking a Catch Branch [page
133]

• Tutorial: Running the ThrowAWF Project [page 134]

• Tutorial: Running the CompensateAWF Project [page 135]

SerenaSampleTickerService Company Names and Ticker Symbols

Several of the tutorials in this section use the SerenaSampleTickerService. The companies
listed on this Web service and their ticker symbols are shown in the following table. In
some of the steps, you are required to use the values in this table.

Company Name Ticker Symbol

Aftabitorium AFT

Bluejay Bird Supply BBS

Carol Creations CCR

Meg N Ah Electric Co. MAC

Rob & Bert Manufacturing RBM

Tim Buck 2 Entertainment TBE

Tutorial: Running the GenericFaultAWF Project

In this exercise, you run the GenericFaultAWF Project in SBM Work Center.

To run the GenericFaultAWF Project:

1. Log on to SBM Work Center.

2. Click the FaultHandlingApp icon.

3. Click +New.

4. On the Browse tab, click the GenericFaultAWF Project link.

The Submit transition form opens.

5. In the Title field, enter your user ID, and then click OK.

The message "This user is valid" is returned in the Description field.

6. Click +New.

Part 1: Basic Orchestration Topics

130 Solutions Business Manager (SBM)

7. On the Browse tab, click the GenericFaultAWF Project link.

8. In the Title field of the Submit transition form, enter an invalid user ID such as
InvalidUser, and then click OK.

The message "This user is not valid" is returned in the Description field.

Tutorial: Altering the GenericFaultOWF to Return a Web Service Fault

In this exercise, you alter the GenericFaultOWF orchestration workflow by mapping an
invalid user ID. When the orchestration workflow is invoked, a Web service fault is
generated.

To alter the GenericFaultOWF to return a Web service fault:

1. Open SBM Composer.

2. Click the Composer button, and then click Open.

The Open Process App dialog box opens.

3. Select FaultHandlingProcApp, and then select Open.

4. In App Explorer, click FaultHandlingProcApp, and then click the All Items filter.

5. Under Orchestration Workflows, click GenericFaultOWF.

6. In the orchestration workflow editor, select the VerifyUser step.

7. On the Data Mapping tab of the Property Editor, expand the auth data element,
locate the userId data element, and enter an invalid user ID such as ZZZZ in the
corresponding Default value column.

8. Publish and deploy the FaultHandlingProcApp.

See Step 6: Publish the Process App [page 192] and Step 7: Deploy the Process App
[page 192] for instructions.

Tutorial: Running the GenericFaultAWF Project and Invoking the
CatchAll Branch

In this exercise, you run the altered GenericFaultAWF Project in SBM Work Center.

To run the GenericFaultAWF Project and return an error message:

1. Log on to SBM Work Center.

2. Click the FaultHandlingPro icon.

3. Click +New.

4. On the Browse tab, click the GenericFaultAWF Project link.

The Submit transition form opens.

5. Enter some text in the Title field, and then click OK.

SBM Orchestration Guide 131

The message An unknown error occurred at
GenericFaultAWF_GenericFaultOWF_VerifyUser is returned in the Description field.

Note: The orchestration workflow will fail when you invoke it, so it does
not matter what you enter in the Title field. However, you must enter
something, because this is a required field.

6. To find out more about the error, you can return to the FaultHandlingProcessApp
in SBM Composer and look for the associated SOAP fault in the Common Log Viewer
as follows:

a. If the Common Log Viewer tab is not visible, on the Ribbon, in the Common
Views group, select the Common Log Viewer check box.

b. On the Overview tab of the Log Viewer, click Refresh.

GenericFaultOWF should be selected.

c. On the Details tab, select the latest run on the Run tab.

d. Look for the error message that begins with A fault occurred during the
execution of the orchestration…

e. Right-click anywhere in the message row, and then select Show Message.

The Message Detail dialog box opens and shows the content of the SOAP
message.

f. Click the Previous button until you see the message that contains the SOAP
fault. This message begins as follows: A Web service was invoked at Service
step VerifyUser, and now the Orchestration Engine is receiving the
following message.

g. In the SOAP message that follows, locate the SOAP fault, which begins with
<SOAP-ENV:Fault.
The received SOAP message for the GenericFaultApp Project should contain
the following information:

…
<SOAP-ENV:Fault xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'>

<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Invalid User ID or Password</faultstring>
<detail>

<ae:AEWebservicesFault xmlns:ae='urn:sbmappservices72'>Invalid
User ID or Password</ae:AEWebservicesFault>

</detail>
</SOAP-ENV:Fault>
…

Note that the SOAP fault indicates an invalid user ID or password.

h. Click the Previous button again until you see the SOAP message that contains
the source of the error. This message begins as follows: A Web service is being
invoked at Service step VerifyUser, and the Orchestration Engine is
sending the following message.

Part 1: Basic Orchestration Topics

132 Solutions Business Manager (SBM)

The sent SOAP message for the GenericFaultApp Project should contain the
following information:

…
xmlns:ns8='urn:sbmappservices72'><ns8:auth><ns8:userId>ZZZZZ</ns8:userId>

</ns8:auth><ns8:loginId
…

Note the incorrect entry for userID.

7. After you complete this part of the tutorial, you can restore GenericFaultOWF to its
original, valid state by deleting the invalid userId value and redeploying the process
app. If you do not do this, you can still run the other projects in the
FaultHandlingProcessApp.

Tutorial: Running the NamedFaultAWF Project and Invoking a Catch
Branch

In this exercise, you run the NamedFaultAWF Project in SBM Work Center.

To run the NamedFaultAWF Project:

1. Log on to SBM Work Center.

2. Click the FaultHandlingApp icon.

3. Click +New.

4. On the Browse tab, click the NamedFaultAWF Project link.

The Submit transition form opens.

5. In the Title field, enter one of the business names from the table in
SerenaSampleTickerService Company Names and Ticker Symbols [page 130], and
then click OK.

The ticker symbol is returned in the Title field of the state form.

6. Click GetBuyRating.

The GetBuyRating transition form opens.

7. Click OK.

The buy rating is returned in the Description field of the state form. The
Description field should contain the following message: "This company has a
strong-buy rating."

8. Click +New.

9. On the Browse tab, click the NamedFaultAWF Project link.

10. In the Title field, type some invalid input such as Acme Company, and then click OK.

The SerenaSampleTickerService-GetTickerSymbolFault message appears in the
Description field. If you typed Acme Company, the message should read as follows:
"No information is available for 'acme company'. The companies listed on this service
are 'Rob & Bert manufacturing', 'Aftabitorium', 'Meg N Ah Electric Co.', 'BlueJay Bird

SBM Orchestration Guide 133

Supply', 'Tim Buck 2 Entertainment', and 'Carol Creations'." If you click
GetBuyRating, the NamedFaultOWF2 orchestration workflow is not invoked and
the information in the Title and Description fields does not change.

Tutorial: Running the ThrowAWF Project

In this exercise, you run the ThrowAWF Project in SBM Work Center.

To run the ThrowAWF Project:

1. Log on to SBM Work Center.

2. Click the FaultHandlingApp icon.

3. Click +New.

4. On the Browse tab, click the ThrowAWF Project link.

The Submit transition form opens.

5. In the Title field, type one of the company names from the table in
SerenaSampleTickerService Company Names and Ticker Symbols [page 130], except
Bluejay Bird Supply, and then click OK.

The ThrowAWF Project state form opens, and the text appears in the Title field.

6. Click GetTickerSymbol.

The Submit transition form opens.

7. Click OK.

The ThrowOWF orchestration workflow is invoked. The data from the Title field is
passed to the IsCompanyBluejay Decision step, which chooses a branch based on
its rule. In this case, the data is not "Bluejay Bird Supply," so it selects the
IsNotBlueJay branch and passes the data to the SerenaSampleTickerService Web
service.

The Web service's GetTickerSymbol operation is invoked, and the Web service
returns a ticker symbol for the company name that you typed in the Title field. The
ticker symbol appears in the Description field of the state page.

8. Click +New.

9. On the Browse tab, click the ThrowAWF Project link.

The Submit transition form opens.

10. In the Title field, type some text, such as ZZZZ. (Do not use any of the company
names from the table in SerenaSampleTickerService Company Names and Ticker
Symbols [page 130], including Bluejay Bird Supply.) Click OK.

The ThrowAWF Project state form opens, and the text appears in the Title field.

11. Click GetTickerSymbol.

The transition form between the Submit and TickerSymbol states opens.

12. Click OK.

Part 1: Basic Orchestration Topics

134 Solutions Business Manager (SBM)

The ThrowOWF orchestration workflow is invoked. The data from the Title field is
passed to the IsCompanyBluejay Decision step, which chooses a branch based on
its rule. In this case, the data in the Title field is not Bluejay Bird Supply, so it
selects the IsNotBluejay branch and passes the data to the
SerenaSampleTickerService Web service.

The Web service's GetTickerSymbol operation is invoked, and the Web service
determines that the data is not valid. The Web service generates the
GetTickerSymbolFault, which is caught by the GetTickerSymbolFault Catch
branch.

The Catch branch passes the fault detail to the ReturnGetTickerSymbolFault
Throw step, which throws a fault and the error text to the SBM Application Engine.

The SBM Application Engine stops the workflow and displays the following error
message on the state form, below the transition buttons: Error occurred during
web service invocation: No information is available for 'ZZZZ'. The companies
listed on this service are 'Rob & Bert manufacturing', 'Aftabitorium', 'Meg N
Ah Electric Co.', 'BlueJay Bird Supply', 'Jay Buck 2 Entertainment', and
'Carol Creations'. (The text after the colon is the fault detail.)

13. Click +New.

14. On the Browse tab, click the ThrowAWF Project link.

The Submit transition form opens.

15. In the Title field, type Bluejay Bird Supply, and then click OK.

The ThrowAWF Project state form opens, and the text appears in the Title field.

16. Click GetTickerSymbol.

The Submit transition form opens.

17. Click OK.

The ThrowOWF orchestration workflow is invoked. The data from the Title field is
passed to the IsCompanyBluejay Decision step, which chooses a branch based on
its rule. In this case, the data is "Bluejay Bird Supply." The Decision step selects
the IsBluejay branch and passes the data to the ReportBluejay Throw step, which
throws a fault and the text mapped in the FaultString data element to the SBM
Application Engine.

The SBM Application Engine stops the workflow and displays the following error on
the state page, below the transition buttons: Error occurred during web service
invocation: SOAPFaultCode: ns1:ERROR_BLUEJAYSOAP Fault String: Bluejay Bird
Supply is a credit risk.

Tutorial: Running the CompensateAWF Project

In this exercise, you run the CompensateAWF Project in SBM Work Center.

To run the CompensateAWF Project:

1. Log on to SBM Work Center.

2. Click the FaultHandlingPro icon.

SBM Orchestration Guide 135

3. Click +New.

4. On the Browse tab, click the CompensateAWF Project link.

The Submit transition form opens.

5. In the Title field, type any of the company names from the table in
SerenaSampleTickerService Company Names and Ticker Symbols [page 130], and
then click OK.

The CompensateAWF Project state form opens, and the company name appears
in the Title field.

6. Click DemoCompensate.

The Submit transition form opens.

7. Click OK, and then click the Reload Item button.

The CompensateOWF orchestration workflow is invoked. The data from the Title
field is passed to the UpdateTitle Service step. The UpdateTitle Service step is
invoked and passes the text that is mapped to the Title field, "Updated by
CompensateOWF," to the GetTickerSymbol Service step. The Web service's
GetTickerSymbol Service step is invoked, and the text is returned to the SBM
Application Engine, which displays "Updated by CompensateOWF" in the Title field
of the state page.

8. Click +New.

9. On the Browse tab, click the CompensateAWF Project link.

The Submit transition form opens.

10. In the Title field, type any text that is not contained the company names from the
table in SerenaSampleTickerService Company Names and Ticker Symbols [page
130], and then click OK.

The CompensateAWF Project state form opens, and the text you typed appears in
the Title field.

11. Click DemoCompensate.

The Submit transition form opens.

12. Click OK, and then click the Reload Item button.

The CompensateOWF orchestration workflow is invoked. The Web service's
GetTickerSymbol operation is invoked, and the Web service determines that the data
is not valid. The Web service generates the GetTickerSymbolFault, which is caught
by the GetTickerSymbolFault Catch branch. This branch passes the fault detail to
the ReturnTickerSymbolFault Throw step, which throws a fault to the
Compensate step in the FaultHandler section of the OuterScope. The
Compensate step looks for any enclosed, successfully completed scopes and finds
the UpdateTitle scope. The CompensationHandler section for this scope contains
a Service step to invoke the SBM Application Engine TransitionItem operation,
which rolls back the change to the Title field that happened in the UpdateTitle
scope. Note that this scope changed the Title field to "Updated by
CompensateOWF," but the Compensate step is now rolling back that change. It
also changes the Description field to "Returning Title to its original value." The

Part 1: Basic Orchestration Topics

136 Solutions Business Manager (SBM)

Application Engine displays the original data from the Title field in the Title field of
the state form and "Returning Title to its original value." in the Description field.

Raising External Events
See Raising Events from External Products [page 145] for a procedure that shows you
how to raise external events.

SBM Orchestration Guide 137

Part 1: Basic Orchestration Topics

138 Solutions Business Manager (SBM)

Chapter 4: Orchestration Use Cases

The use cases in this section describe how to implement common use cases that use
orchestrations.

This section contains the following use cases:

• Building Dynamic Arrays [page 139]

• Raising Events from External Products [page 145]

• Executing a Post Transition Through a Web Service [page 151]

• Executing a Copy Transition Through a Web Service [page 155]

• Sending Multiple Values in an Event [page 159]

• Use Case: Updating Subtask Items [page 163]

• Mapping Custom Endpoint Information in a Service Call [page 166]

• Using Custom Endpoints with RESTCaller [page 166]

• Running SBM ModScript from an Orchestration [page 168]

Building Dynamic Arrays
In SBM Composer, you can build an array with a fixed number of array elements at design
time. This is known as a fixed array.

However, sometimes you must determine the number of array elements at runtime (that
is, when an orchestration workflow runs). For example, you want to send telephone
numbers to an SMS (Short Message Service) Web service. You use a Service step in an
orchestration workflow to get the telephone numbers of those users who were selected on
a form.

Because you do not know the number of selected users and telephone numbers in
advance, you build a dynamic array. For an orchestration workflow to dynamically add
elements to an array, you use a Calculate step to target each element in the array in
sequential order, beginning with 1.

This section includes use cases that illustrate ways to make Web service calls that accept
a dynamically-sized list of elements. They are for demonstration purposes only, and do
not represent realistic scenarios.

Important: If you do not use dynamic arrays, you must make multiple Web
service calls with one element in each array, or create an array in advance that
has a fixed length (for example, a 20-element array). These methods have a
negative impact on performance.

SBM Orchestration Guide 139

CAUTION:

Array elements must be ordered chronologically. Do not split arrays or interject
an array element into the middle of an array. For example, you cannot interject
an array element between two existing array elements, and you cannot create a
seventh array element if there is no sixth array element.

Use Case: Creating an Array to Use in a Subsequent Service
Step
In this use case, you get an array of file names from an auxiliary table that stores Source
Code Management (SCM) application information, and then create a new item for each file
in another auxiliary table that stores Issue Defect Management (IDM) information.

Note: Similar data can come from any external Web service. That is, instead of
coming from an auxiliary table, the data about files and associated issues can
come from your SCM application.

The orchestration workflow loops through each file and then processes it as follows:

1. Gets an array of files from an auxiliary table.

2. Adds the file names to an input element in a subsequent Service step.

3. Creates new items in another auxiliary table.

To create an array and use it in a subsequent Service step:

1. Add steps to the orchestration workflow as shown below.

2. In the Working Data for the workflow, add a variable to store the number of loops
through the ForEachFile step, using the type "Integer." Set the default value of the
variable to 0.

3. Configure the GetSCMData step to get a list of file names from the auxiliary table
for the SCM application.

Part 1: Basic Orchestration Topics

140 Solutions Business Manager (SBM)

4. Configure the ForEachFile step to repeat the operations in the loop for each file
returned in the GetSCMData response.

5. Configure the CopyNumber step to store the number of times the orchestration
workflow loops through the ForEachFile step.

Note: This step must be included. You must copy the number of loops into
the working data; you cannot use the ForEachFile step by itself.

6. Configure the CopyTitle step to set the value of the title in the item[] array in the
CreateFiletoIssue step. This value is a file name returned by the GetSCMData
step.

SBM Orchestration Guide 141

7. Configure the CreateFileToIssue step to create a new item in another auxiliary
table for each file that was returned by the GetSCMData step.

Use Case: Populating Custom Fields
In this use case, you add two Text custom fields to the primary table: Cities and Name.
Then you dynamically create an extended field list in a Service step that populates these
fields.

Note: In this use case, you use working data as input to the ForEachNode
loop, and the ForEachNode loop creates an extended field list as an input to
the UpdateItem step. The same logic can be used when an event contains
array records (that is, you have arrays included in the Extension data in an
event definition). Instead of using the working data as the input to the
ForEachNode step, you can use the EventNotice.

The orchestration workflow loops through each node and processes it as follows:

1. Sets the database name of the first field in the extended field list.

2. Sets the value of the first field in the extended field list.

3. Sets the database name of the second field in the extended field list.

Part 1: Basic Orchestration Topics

142 Solutions Business Manager (SBM)

4. Sets the value of the second field in the extended field list.

5. Updates the fields in the SBM item with information in the extended field list.

To dynamically create an extended field list that populates custom fields:

1. Add steps to the orchestration workflow as shown below.

2. Define the working data for the orchestration workflow:

a. Create an array with two array elements. Set a default value for each array
element.

b. Add a variable to store the number of loops through the ForEachNode step,
using the type "Integer." Set the default value of the variable to 0.

3. In the ForEachNode step, enter an expression that describes the source of the data
to be processed. In this example, the Node array is the source of the data.

4. Configure the CopyNumber step to store the number of times the orchestration
workflow loops through the ForEachNode step.

SBM Orchestration Guide 143

Note: This step must be included. You must copy the number of loops into
the working data; you cannot use the ForEachNode step by itself.

5. Configure the Node1 branch to set the index value for the "cities" node to "1."

6. Configure the SetCitiesField step to set the database name of the first extended
field to CITIES.

7. Configure the SetNameField step to set the database name of the second extended
field to NAME.

8. Configure the SetFieldValue step to set the value of the applicable extended field.

Part 1: Basic Orchestration Topics

144 Solutions Business Manager (SBM)

Note: In this use case, you use the first array element to create the
CITIES extended field and the second array element to create the NAME
extended field. The index used in the Target expression for the
SetCitiesField and SetNameField steps shows the first array element
using [1], and the second array element using [2]. The order in which
these fields are defined in the application table does not matter; you can
use any order in the orchestration workflow. However, after the order is
set, the values for those fields must be in the same order. For example,
after [1] is assigned "CITIES," its value will be
extendedField[1].value[1].displayValue.

9. Configure the UpdateItem step to populate the custom fields in SBM items.

Raising Events from External Products
Note: This topic assumes that you understand events and event definitions. For
information about them, see About Events [page 27] and About Application
Links and Event Definitions [page 28].

SBM Orchestration Guide 145

Any external product that is capable of calling a Web service can raise events in SBM by
calling a corresponding Web service. SBM Composer provides the ability to automatically
generate a .wsdl file that you can use in the external product to call the Web service.

For example, suppose you use Salesforce.com to track customer prospects, and want to
have a new item created in SBM whenever a potential customer is initially contacted. You
can raise an external event that causes an asynchronous orchestration workflow to run
whenever this event occurs. The orchestration workflow creates the item in SBM.

Because the event provides the inputs for the workflow, the .wsdl file must be designed
specifically for the event and its associated orchestration workflows. You start by defining
a custom event definition that defines the data you want to pass to the workflow. This
event definition defines both the event that the external product will raise and the inputs
for the orchestration workflow. The event definition determines the content of the .wsdl
file. When you click the Export external event WSDL button in the event definition
Property Editor, the .wsdl file that will be used to raise the event is created.

The following procedure describes a way to raise an external event that updates a field in
a SBM item. In this procedure, a sales product sends an external event to update the
Discount Percent field. In SBM Composer, you define two custom data fields in a custom
event definition: ItemID and DiscountPercent. The orchestration workflow that is
invoked when the external event is raised updates the item with the specified discount
amount.

To update the discount percent value in an SBM item:

1. Create a new orchestration process app.

2. In App Explorer, right-click Application Links, and then select Add New Event
Definition.

3. In the Event Definition Configuration dialog box that opens, create a new custom
event definition as shown in the following illustration, and then click OK.

Part 1: Basic Orchestration Topics

146 Solutions Business Manager (SBM)

4. Define values in the event definition editor that opens as shown in the following
illustration. See Creating a New Custom Event Definition [page 69] for more
information.

The Extension element is automatically added to the Custom data. Its Type is the
event definition name with EventNoticeExtension appended to it.

The properties for the Extension element include its named type and namespace.

SBM Orchestration Guide 147

5. On the Event Map tab of the event definition Property Editor, click Add.

6. In the Map Event Definition to Workflow dialog box that opens, select [New
Workflow] and then click OK.

A new orchestration workflow is added to App Explorer.

7. On the General tab of the event definition Property Editor, click Export external
event WSDL, and save the .wsdl file to the file system of your computer.

Part 1: Basic Orchestration Topics

148 Solutions Business Manager (SBM)

8. Click the orchestration workflow that was added to App Explorer and add a Service
step to it as shown below. This is the orchestration workflow that will be invoked
when the external event is raised.

9. Configure the UpdateItem step to update the discount amount:

a. On the General tab of the step Property Editor, select the Web service and
operation shown in the following illustration.

b. Click the Data Mapping tab of the step Property Editor.

c. Expand id under item, click in the Source elements column for the
tableIdItemId step input, and then select ItemID under Extension in the
Select a source popup that opens. (This is one of the custom data fields you
added to the custom event definition.)

SBM Orchestration Guide 149

d. Click OK. The path is added to the Source elements column.

e. Right-click the extendedField[] step input, and then select Add Array Record.
Expand extendedField[1], and then type DISCOUNTPERCENT in the Default value
column for the dbName step input. This is the database name of the field that
will be updated.

f. Expand the value[] step input, right-click, and then select Add Array Record.
Expand value[1] and then and then click in the Source elements column for
the displayValue step input. In the Select a source popup that opens, select
DiscountPercent under Extension. (This is the other custom data field you
added to the custom event definition.) Click OK. The path is added to the
Source elements column.

Part 1: Basic Orchestration Topics

150 Solutions Business Manager (SBM)

10. Deploy the process app.

11. Use the exported .wsdl file to create a SOAP request to raise an external event. You
can use any third-party product that can create and send SOAP requests to do this.
If you are an advanced user, you can alternatively create the SOAP request
manually and then send it in an e-mail message. For more information, see Raising
an External Event through E-mail [page 228].

Executing a Post Transition Through a Web Service
A "Post" transition submits a new item from the current item into another project. This
use case shows how to use a Web service in an orchestration workflow to execute a Post
transition without any user intervention. In this use case, a new item is automatically
submitted into a Product Management project after an enhancement item is submitted
into a Development project. The Submit transition has an action that forces the workflow
to immediately execute the Enh Post transition. The Enh Post transition has an action
that invokes the orchestration workflow.

SBM Orchestration Guide 151

Prerequisites:

The following must be set up before you perform this procedure:

• Application process app named Product Mgt. (For this tutorial, it is unnecessary to
add states or transitions to the application workflow for this process app.)

• Process app named Development.
▪ Type EnhApp as the application name for this process app.

▪ Type EnhApp as the application workflow name for this process app and
configure it as shown in the following illustration.

Note:

▪ The Post transition is a "Post" transition. The Submit and Enh Post
transitions are "Regular" transitions. (For information about transition
types, see the SBM Composer documentation.)

▪ On the Options tab of the Property Editor for the Enh Post and Post
transitions, select the "Quick transition" and "Hide transition button
on state form" options.

To execute a Post transition through a Web service:

1. Add a transition action to the Submit transition:

a. Select the Submit transition.

Part 1: Basic Orchestration Topics

152 Solutions Business Manager (SBM)

b. Click the Actions tab in the transition Property Editor.

c. Click New.

d. In the Action Wizard that opens, select Transition and then click Next.

e. Make sure This item is selected and then click Next.

f. Make sure Unconditionally is selected and then click Next.

g. Select the Enh Post transition and then click Finish.

2. Add an orchestration action to the Enh Post transition:

a. Select the Enh Post transition.

b. On the Actions tab of the transition Property Editor, click New.

c. In the Action Wizard that opens, make sure that Orchestration Workflow is
selected as the action type, that and continue executing (asynchronous)
using the local event is in the rule description, and then click Next.

d. Make sure that This item is selected as the affected item, and then click Next.

e. Make sure that Unconditionally is selected as the condition, and then click
Next.

f. Select New orchestration. In the New Orchestration dialog box, type
EnhPost and then click OK. The orchestration and an orchestration workflow are
added to App Explorer.

g. Make sure the orchestration workflow is selected, and then click Finish. An event
definition is added to App Explorer under the Application Links heading.

3. Specify the fields that will be sent to the orchestration workflow:

a. Click Event without Reply under the Orchestration Links heading in App
Explorer.

b. In the Event without Reply dialog box that opens, clear all fields except Item
Id, Item Type, and Title. If you click EnhAppEventDefinition in App Explorer
under the Application Links heading, the ItemId, ItemId_TableRecId,
ItemId_TableId, ItemType, and Title fields are listed in the Custom data
section.

4. Configure the orchestration workflow:

a. Click NewEnhPostWorkflow in App Explorer under the Orchestration
Workflows heading.

SBM Orchestration Guide 153

b. Add steps to the orchestration workflow as shown in the following illustration:

c. Click an empty area of the workflow.

d. Click the Data Mapping tab in the workflow Property Editor.

e. Right-click Working data, select Add New, and then select String.

f. Change the name of the new data element (String) to TableItemId.

g. Click the down arrow in the Source elements column.

h. In the Select a source popup that opens, expand NewOrchPostWorkflow,
Inputs, EventNotice, and Extension; select ItemId_TableRecId, and then
click OK.

i. On the General tab of the GetTrans step Property Editor, select
sbmappservices72 in the Service box. In the Operation box, select
GetAvailableTransitions.

j. On the Data Mapping tab of the GetTrans step Property Editor, expand the
auth input and then type a valid user ID and password in the Default value
column.

k. Expand the item input, and then click the down arrow in the Source elements
column for the tableIdItemId row.

l. In the Select a source popup that opens, select TableItemId under Working
data, and then click OK.

m. Enter GetTrans.GetAvailableTransitionsResponse.return on the Options tab of the
ForEachTrans step Property Editor.

n. Type IsPost on the General tab of the branch Property Editor for the top branch
from the TransName step.

o. Enter ForEachTrans.item.transition.displayName = 'Post' on the Options tab of
the IsPost branch Property Editor.

Part 1: Basic Orchestration Topics

154 Solutions Business Manager (SBM)

p. On the General tab of the InvokePost step Property Editor, select
sbmappservices72 from the Service list. Select TransitionItem from the
Operation list.

q. On the Data Mapping tab of the InvokePost step Property Editor, expand the
auth input and then type a valid user ID and password in the Default value
column.

r. Expand the item and id inputs, click the down arrow in the Source elements
column for the tableIdItemId row, and select tableIdItemId under Working
data.

s. Scroll down to the transition step input, expand it, and then click the down
arrow in the Source elements column of the id row.

t. In the Select a source popup that opens, expand ForEachTrans, expand
Outputs, item, and transition; select id, and then click OK.

u. Select False in the Default value column of the breakLock row.

5. Configure the Post transition:

a. Right-click the References heading in App Explorer, and select Add Application
Reference.

b. In the Add Application Reference dialog box that opens, select the application
associated with the Product Mgt process app and then click Add.

c. In the application workflow, select the Post transition.

d. Click the Post Options tab, and select the Product Mgt application and table.

6. Open and then deploy the Product Mgt process app.

7. Open and then deploy the Development process app.

8. In SBM Application Administrator, specify the project to which to post items.

9. Test the process app.

a. In SBM Work Center, submit an item into the Development project.

b. Type a title in the Submit transition form, and then click OK.

c. Perform a search for the item. The posted item is displayed in the search results,
with a new item ID.

Executing a Copy Transition Through a Web Service
A "Copy" transition lets you copy primary items and place them in another location in the
project hierarchy within the same table. This use case shows how to use a Web service in
an orchestration workflow to execute a Copy transition without any user intervention. In
this use case, a copy of an item is automatically submitted into a Documentation project
after an enhancement item is submitted into a Development project. The Submit
transition has an action that forces the workflow to immediately execute the Enh Copy
transition. The Enh Copy transition has an action that invokes the orchestration workflow.

SBM Orchestration Guide 155

Prerequisites:

The following must be set up before you perform this procedure:

• Application process app named Develop.

• Application in that process app named DevApp.

• Application workflow in that process app named DevAppWorkflow, configured as
shown in the following illustration.

Note:

▪ The Copy transition is a "Copy" transition. The Submit and Enh
Copy transitions are "Regular" transitions. (For information about
transition types, see the SBM Composer documentation.)

▪ On the Options tab of the Property Editor for the Enh Copy and
Copy transitions, select the "Quick transition" and "Hide transition
button on state form" options.

To execute a Copy transition through a Web service:

1. Add a transition action to the Submit transition:

a. Select the Submit transition.

Part 1: Basic Orchestration Topics

156 Solutions Business Manager (SBM)

b. On the Actions tab of the transition Property Editor, click New.

c. In the Action Wizard that opens, select Transition and then click Next.

d. Make sure This item is selected and then click Next.

e. Make sure Unconditionally is selected and then click Next.

f. Select the Enh Copy transition and then click Finish.

2. Add an orchestration action to the Enh Copy transition:

a. Select the Enh Copy transition.

b. On the Actions tab of the transition Property Editor, click New.

c. In the Action Wizard that opens, make sure that Orchestration Workflow is
selected as the action type, that and continue executing (asynchronous)
using the local event is in the rule description, and then click the Next button.

d. Make sure that This item is selected as the affected item, and then click the
Next button.

e. Make sure that Unconditionally is selected as the condition, and then click the
Next button.

f. Select New orchestration, and type EnhCopy in the New Orchestration
dialog box. The orchestration and an orchestration workflow are added to App
Explorer.

g. Make sure the new orchestration workflow is selected, and then click Finish. An
event definition is added to App Explorer under the Application Links heading.

3. Specify the fields that will be sent to the orchestration workflow:

a. Click Event without Reply under the Orchestration Links heading in App
Explorer.

b. In the Event without Reply dialog box that opens, clear all fields except Item
Id, Item Type, and Title. If you click EnhAppEventDefinition in App Explorer
under the Application Links heading, the ItemId, ItemId_TableRecId,
ItemId_TableId, ItemType, and Title fields are listed in the Custom data
section.

4. Configure the orchestration workflow:

a. Click NewEnhCopyWorkflow in App Explorer under the Orchestration
Workflows heading.

SBM Orchestration Guide 157

b. Add steps to the orchestration workflow as shown in the following illustration:

c. Click an empty area of the workflow.

d. Click the Data Mapping tab in the workflow Property Editor.

e. Right-click Working Data, select Add New, and then select String.

f. Change the name of the new data element (String) to TableItemId.

g. Click the down arrow in the Source elements column.

h. In the Select a source popup that opens, expand NewOrchCopyWorkflow,
Inputs, EventNotice, and Extension; select ItemId_TableRecId, and then
click the OK button.

i. On the General tab of the GetTrans step Property Editor, select
sbmappservices72 from the Service list. Select GetAvailableTransitions
from the Operation list.

j. On the Data Mapping tab of the GetTrans step Property Editor, expand the
auth input and then type a valid user ID and password in the Default value
column.

k. Expand the item input, click the down arrow in the Source elements column
for the TableItemId row, and select tableIdItemId under Working data.

l. Enter GetTrans\GetAvailableTransitionsResponse\return on the Options tab of the
ForEachTrans step Property Editor.

m. Type IsCopy on the General tab of the branch Property Editor for the top branch
from the TransName step.

n. Enter ForEachTrans\item\transition\displayName = 'Copy' on the Options tab of
the IsCopy branch Property Editor.

o. On the General tab of the InvokeCopy step Property Editor, select
sbmappservices72 from the Service list. Select TransitionItem from the
Operation list.

Part 1: Basic Orchestration Topics

158 Solutions Business Manager (SBM)

p. On the Data Mapping tab of the InvokeCopy step Property Editor, expand the
auth input and then type a valid user ID and password in the Default value
column.

q. Expand the item and id inputs, and then click the down arrow in the Source
elements column for the tableIdItemId row.

r. In the Select a source popup that opens, select TableItemId under Working
data.

s. Scroll down to the transition step input and expand it.

t. Click the down arrow in the Source elements column of the id row.

u. In the Select a source popup that opens, expand ForEachTrans, expand
Outputs, item, and transition; select id, and then the click OK button.

v. Select False in the Default value column of the breakLock row.

5. Deploy the Development process app.

6. In SBM Application Administrator, specify the project to which to post items.

7. Test the process app.

a. In SBM Work Center, submit an item into the Develop Project project.

b. Type a title in the Submit transition form, and then click the OK button.

c. Perform a search for the item. The copied item is displayed in the search results,
with a new item ID.

Sending Multiple Values in an Event
In the following use cases, a Multi-Selection field called "Testers" is populated with values
specified in orchestration workflow steps.

Sending Values Asynchronously
In this use case, the Testers field is updated both with values a user selects on a form and
values specified in a Service step in an asynchronous orchestration workflow. The Testers
field values are sent in the application link for the orchestration workflow.

1. Add a Service step with the TransitionItem operation to the orchestration
workflow as shown below.

SBM Orchestration Guide 159

2. Configure the TransitionItem step to add "Amy" and "Robert" to the Testers field.

Note: This step uses the APPEND-VALUES parameter of the Set-Value-
Method. For more information, see the SBM Web Services Developer's
Guide.

After the user selects "Susan" and transitions the item, the Testers field contains
"Amy," "Robert," and "Susan."

Part 1: Basic Orchestration Topics

160 Solutions Business Manager (SBM)

Sending Values Synchronously
In this use case, the values a user selects on a form for the Testers field are overwritten
by values specified in the End step in a synchronous orchestration workflow. The Testers
field values are sent in the orchestration link for the orchestration workflow.

Configure the End step to update the Testers field to contain only "Susan" and "Joe."

SBM Orchestration Guide 161

After the user selects "Amy" and transitions the item, the Testers field contains only "Joe"
and "Susan."

Part 1: Basic Orchestration Topics

162 Solutions Business Manager (SBM)

Use Case: Updating Subtask Items
In this use case, you get the subtasks from an item and then automatically update fields
in the subtasks when those fields are changed in the principal item.

Note: For information about creating subtasks, see the "Defining Subtask-
Driven Actions" tutorial in the SBM Composer Guide.

The orchestration workflow loops through each subtask and processes it as follows:

1. Gets the principal item, including its subtasks.

2. Stores the first subtask in a working data variable.

3. Updates the Regression and Info fields in the subtask with information in the
extended field list. The values in the extended field list are mapped to the associated
values in the principal item.

4. Repeats step 2 and step 3 for each remaining subtask.

To update subtask values based on principal item values:

1. Add steps to the orchestration workflow as shown below.

SBM Orchestration Guide 163

2. Define the working data for the orchestration workflow by adding a variable to store
the subtask items.

3. Configure the GetItem step to get the principal item.

4. Configure the ForEachSubtask step to get each subtask from the principal item.

Part 1: Basic Orchestration Topics

164 Solutions Business Manager (SBM)

5. Configure the SetSubtask step to store the subtask ID in the working data variable.

6. Configure the Update Subtasks step to update each subtask with the extended
field values from the principal item.

SBM Orchestration Guide 165

Mapping Custom Endpoint Information in a Service Call
Custom endpoints have data that you can map as input for any of the SOAP services you
have. SOAP services have their own endpoints that will be resolved individually when you
deploy, but if you are calling another service from a service as part of an orchestration,
you can use information from custom endpoints as inputs to the calling service so it can
use that information to make whatever calls it needs to make to the other service.

To map custom endpoint parameters in your orchestrated SOAP service call:

1. Ensure that the custom endpoint you want to use is in your current orchestration's
Custom Endpoint Library.

2. Add a SOAP service call that calls another SOAP service to your orchestration
workflow.

3. Click the Source elements column beside the called SOAP service call's URL and
then under Custom Endpoints, select the custom endpoint URL parameter.

4. Map other custom endpoint parameters to your SOAP service call's parameters as
desired, such as user name and password.

You can also map custom endpoint information in RESTCaller, which includes special
handling for calling a REST service from a SOAP service. For more information, refer to
Chapter 10: Calling RESTful Web Services from an Orchestration Workflow [page 237].

Using Custom Endpoints with RESTCaller
Using custom endpoints in orchestrations enables you to externalize the location of a
REST resource from the orchestration design. If you have defined a custom endpoint to
use with your REST service calls, the custom endpoint implementation enables you to

Part 1: Basic Orchestration Topics

166 Solutions Business Manager (SBM)

access endpoint data and dynamically extend the URL. Following are some ways you can
use custom endpoints with RESTCaller:

• Use Case #1: Setting Authentication Based on the Custom Endpoint [page 167]

• Use Case #2: Using Different Servers for Different Environments [page 167]

• Use Case #3: Using the Same Server with Different Resources Using a Resource Path
[page 167]

• Use Case #4: Using the Same Server with Different Resources Using Query Strings
[page 168]

Use Case #1: Setting Authentication Based on the Custom Endpoint
You can use the authentication set in a custom endpoint as the authentication for the
REST service call that will be made by your RESTCaller step. To configure this, do the
following:

1. Use the Custom Endpoint Url field as the resource URL or a base to calculate the
resource URL and map the result to the RESTCaller restUrl parameter.

2. Set the RESTCaller authorizationType to ENDPOINT.

3. Map the custom endpoint EndpointID field to httpAuthorization > endpoint >
endpointID.

Note: For some authorization types you can map the custom endpoint
information to the appropriate RESTCaller fields rather than use the ENDPOINT
authorization type.

Use Case #2: Using Different Servers for Different Environments
The typical use case is where you may have a resource server for the QA environment and
a separate resource server for the Production environment. For example:

QA:

http://qaserver:port/resources/resource
Production:

http://productionserver:port/resources/resource
While the resource path is constructed the same way in both cases, the server address is
different. By creating a custom endpoint, you can set the service address to the correct
value for the particular environment at the point of deployment without having to change
the orchestration or create some custom mechanism.

In this case, you would simply map the custom endpoint Url parameter to the RESTCaller
restUrl argument, since the value you want for the server is set at the time of
deployment.

Use Case #3: Using the Same Server with Different Resources Using a
Resource Path
Another use case is where a REST service provides access to a number of different
resources. For example, these can be collections of resources, such as an initial resource
that returns a list of states as follows:

SBM Orchestration Guide 167

http://server:port/states
With additional resources that return a specific set of data values concerning San
Francisco, such as the following:

http://server:port/states/CA/cities/SanFrancisco
You could use an orchestration step to calculate a particular resource path depending on
some separately provided value. For example you might pass the values, state = CA and
city = SanFrancisco to the orchestration through its event structure or some other
means. You could add an orchestration step to calculate the URL to pass to the REST
service, taking the base URL from the custom endpoint as follows:

http://server:port/resources/states
and constructing the resource path from the data given and appending it to the URL
provided by the custom endpoint as follows:

CA/cities/SanFrancisco
Finally, you would pass the following constructed URL to the RESTCaller restUrl
parameter.

http://server:port/resources/states/CA/cities/SanFrancisco

Use Case #4: Using the Same Server with Different Resources Using
Query Strings
Some REST services use the HTTP query string to provide additional ways of selecting the
resource. You can append these query parameters to the URL as a properly-formatted
HTTP query and map them to the RESTCaller restUrl parameter or you can provide them
as an array of key-value structures using the RESTCaller params argument, leaving
RESTCaller to append the query string.

For more information on RESTCaller, refer to Chapter 10: Calling RESTful Web Services
from an Orchestration Workflow [page 237].

Running SBM ModScript from an Orchestration
You can use the RunModScript Application Engine Web service call from a Service step in
an orchestration to execute SBM ModScript.

For example, in an orchestration, you might want to invoke a script from the command-
line, read/write data to a file, or update an item with text. You can have an orchestration
call SBM ModScript for any of these tasks and more.

The sbmappservices72 WSDL exports a RunModScript function that the Orchestration
Engine can invoke. The interface allows the caller (Orchestration Engine) to provide input
to the ModScript via an "inputs" data array; and allows ModScript to send output to the
caller via an "output" data array. As such, you can fully incorporate a ModScript as a
Service step in an orchestration.

Note that even though the orchestration may be initiated by an item transition, ModScript
will not have a Shell.Item(). Instead, the Orchestration Engine can send the item's
tableID:itemID as a parameter to the ModScript. The script could reference this input to
read the item as a custom variable.

For details on the RunModScript Web service call, refer to the SBM Web Services
Developer's Guide or SBM Composer help.

Part 1: Basic Orchestration Topics

168 Solutions Business Manager (SBM)

For details on programming with SBM ModScript, refer to the SBM ModScript Reference
Guide or SBM Composer help.

Example: Running a Batch File
In the following example, the "LaunchBat" orchestration contains a Service step that calls
the RunModScript Web service, which runs a ModScript called "LaunchBatFile" that
executes a simple batch file.

"LaunchBatFile" ModScript added to the list of Scripts in SBM Composer:

Contents of run.bat, which is saved in C:\Program Files\Serena\SBM\Application
Engine\ModScript:

@ECHO off
REM --- run.bat
REM --- This is an example batch program to be called
REM --- from the SBM ModScript example "Launch.tsc"
REM --- It appends a new line to C:\out.txt each time it runs
ECHO Launched run.bat, params (if any): %* >> "C:\Program Files\Serena\SBM\
Application Engine\ModScript\out.txt"

SBM Orchestration Guide 169

RunModScript Service step in the "LaunchBat" orchestration workflow:

Note: In the RunModScript call, you can send any one of the elements in
scriptId—you do not need to provide values for every element. You only need to
provide more than one element in the event that the first element does not
uniquely identify the script.

In the Calculate step, the RunModScript response is concatenated to hard-coded text in
the Result target:

Part 1: Basic Orchestration Topics

170 Solutions Business Manager (SBM)

The item's Title field is updated via the TransitionItems Web service call:

SBM item showing the result in the Title field:

The output.txt file results:

Launched run.bat, params (if any): 1007:3 ItemID=

SBM Orchestration Guide 171

Part 1: Basic Orchestration Topics

172 Solutions Business Manager (SBM)

Chapter 5: Orchestration Best Practices

This section provides standards to help you successfully build orchestration workflows that
are easy to maintain and scale.

This section contains the following topics:

• Interaction with Application Workflows [page 173]

• Naming Standards [page 174]

• Usage [page 175]

• Event Handling [page 180]

• Scalability [page 181]

• Security [page 183]

Interaction with Application Workflows
Orchestration workflows often manipulate items in application workflows using
sbmappservices72 operations. This section discusses what you should and should not
do when manipulating items in this manner.

• It is not necessary to provide auth with sbmappservices72 Web service calls
because the user that invokes the orchestration workflow is automatically granted a
Security Token on successful log in to SBM. This means that you can ignore the auth
structure in SBM Application Engine Web service calls. However, if you provide
credentials in the auth element, they will override the Security Token auth. For
example, this might be useful if the calling user does not have privileges to update
the item.

• Never directly modify the State field of an SBM item. The application workflow should
always control the state of items as they progress through the process flow.

• Use data fields and decisions in application workflows to provide process control.
Decisions can respond to changes in data made by the orchestration workflow.
Asynchronous orchestration workflows can use Web services to set data in tables;
synchronous orchestration workflows return data that can change the data in the
item.

Do not make decisions in an orchestration workflow concerning what happens in an
application workflow. For example, to decide which outgoing transition from a state
should be executed, in the application workflow, change data in the item, and use a
decision on the outgoing transition in the application workflow to route the item
correctly. This has two advantages: it decouples the application and the
orchestration, so that changing the application logic is less likely to affect the
orchestration; and it makes the application workflow more clearly describe the
process flow.

• Never directly modify the Owner field of an SBM item. The application workflow
should always control the ownership of items as they progress through the process

SBM Orchestration Guide 173

flow. Use a User field as the owner of a state, and change the user as needed to
control the ownership of an SBM item.

• You can use custom Any-to-Any step transitions to raise orchestration workflow
events. Instead of raising events on every application workflow transition to invoke a
specific orchestration workflow (for example, "update" or "create" to external tool),
create custom transitions from the Any state back to itself. Then use transition
actions on each application workflow transition to execute the appropriate transition
from the Any state. This results in an event definition (Application Link) that does
not change whenever a new or existing application workflow transition needs to raise
a specify type of event.

Note: To hide the transition button on the form, select the "hide button"
option on the Options tab of the transition Property Editor. To hide the
form from the user, select the "quick transition" option.

• When there are multiple asynchronous orchestration actions on the same transition,
only one event of each event type is raised. Events start orchestration workflows that
will run simultaneously depending on available resources, so the ordering of event
actions on the Actions tab has no effect on the execution order of the orchestration
workflows.

Note: See the "Considerations for Using Actions" topic in the SBM
Composer Guide for details.

• To optimize performance, the best practice is to send only necessary data in an event
and avoid passing large amounts of data. Passing too much data in the event may
result in a stack overflow error in the event manager (such as
java.lang.StackOverflowError). If you encounter this problem with your event
design, contact Support and reference solution S138101 to receive help with
increasing the JVM stack size . However, to avoid modifying the stack size, or
accommodate larger sizes of “multi-“ data elements, use the sbmappservices72
GetItem call within the orchestration to retrieve that data.

Naming Standards
Adhering to naming standards makes it easier to maintain and understand an
orchestration workflow.

Step Names
Best practices for orchestration workflow step names follow:

• Use camel case (CamelCase) to name steps. Do not use all uppercase or all
lowercase letters.

• Name the steps to describe what they are doing:

▪ A Calculate step assigns a value to something. It has two parts: the Target and
the Expression. Name the step to describe what is being set in the Target. For
example, use SetTitleField instead of Calculate.

▪ Name ForEach and While steps to describe what they are processing. For
example, use ForEachConfigurationRecord instead of ForEach.

Part 1: Basic Orchestration Topics

174 Solutions Business Manager (SBM)

▪ Name Service steps to describe what the Web service operation is doing. For
example, use CreateAddress instead of CreateAuxItem.

• Name Service steps using a prefix for the Web services. For example, use
SBM_GetTestCases for the sbmappservices72 "GetItems" operation to
distinguish it from non-SBM Web services.

• Do not use a numeric suffix to indicate a different invocation of the same Web
service. For example, do not use SBM_GetItemsByQuery and
SBM_GetItemsByQuery1. Instead, use SBM_RetrieveConfigurationRecords
and SBM_RetrieveMatchingDefects.

• Name each Decision step as a question and name each branch from the step as the
answer. For example, use ValidName for the step name and No for the branch
name.

Note: In newer versions of SBM, spaces are allowed in branch names.
However, in earlier versions spaces are not allowed, so those branches use
camel case.

Working Data Element Names
You use working data elements (variables) to hold intermediate data and other data
needed by orchestration workflow steps. It is important to name these data elements in a
way that makes it clear what role they play and how they are used.

Best practices for working data element names follow:

• Use camel case (CamelCase) to name the data elements. Do not use all uppercase or
all lowercase letters.

• Use a name that makes it clear what kind of data is being stored. For example, do
not use DataElement or Temp. Use descriptive names such as SBMAuth or ItemName
instead.

• Use plurals or List to name working data array elements. For example, WorkItems or
WorkItemList.

Usage
The following sections provide guidelines for good usage.

Orchestration Workflows
Best practices for orchestration workflow usage follow:

• Limit the data that is passed into the workflow to improve the performance of both
asynchronous and synchronous workflows. By default, all fields in the primary table
are passed to an aynchronous orchestration workflow; you can reduce this by
clearing the check boxes for unnecessary fields in the Orchestration Link in the
application. For synchronous workflows, you can choose both inputs and outputs in
the Orchestration Link; select only those fields that are needed. (See About
Orchestration Links [page 29] for information about orchestration links.)

SBM Orchestration Guide 175

CAUTION:

Do not limit the fields that are passed to the workflow if it means that you
will later have to retrieve the field data with a Web service call in a Service
step. The overhead of the Web service call is greater than any benefit
gained by limiting the fields.

• If a Web service returns a large amount of data in the response, the entire body of
data is loaded into memory, which can cause performance problems. Instead of
requesting the entire body of data in a single call, consider breaking it into smaller
pieces. For example, instead of using a "get" operation on 100 items, create a loop
that gets information for twenty items at a time. You also throttle on payload size.
For information about this, see the "Scaling Orchestrations" white paper. To access
this white paper, visit the Knowledgebase, and then search for solution S136965.

• Use asynchronous (not synchronous) orchestration workflows to:

▪ Update or insert data, especially on external systems

▪ Call Web services that can take a long time, because synchronous orchestration
workflows can time out.

Synchronous orchestration workflows should only be used if the user must see the
result of a transition immediately, and only to validate data the user entered or
populate fields on a form.

• If a Web service throws a number of SOAP faults, use separate fault handlers for
each fault. This reduces the complexity of the fault handlers; makes the workflow
design clean and concise; and reduces the size of the workflow, which makes it more
scalable.

• Check for an existing item in an "update" workflow and end the workflow if the item
does not exist. Similarly, check for an existing item in a "create" workflow and end
the workflow if the the item exists. This makes your orchestration handle error cases
gracefully.

• When an orchestration workflow or Web service call updates an external tool, that
tool could, in response to the update, raise an event in SBM to synchronize the
change. Because the change originated in SBM, the event can be ignored. For
example, suppose there are two users: "SBMUser" and "ExternalUser." "SBMUser"
updates an SBM item, and the Last Modifier field value is "SBMUser." The connector
replicates the item in the external tool using "ExternalUser," which automatically
raises an event that is sent to SBM. In this case, the event should be ignored and the
workflow should end.

• When implementing integrations between SBM and an external tool, use a dedicated
SBM user and a dedicated external system user for updating items in the external
system. This can prevent unintended permission errors during the execution of the
orchestration workflow.

• Use references between items in SBM and an external tool. For example, external
tools should contain a field to hold the SBM item ID. This allows workflows to easily
identify the target SBM item and know if one has been created yet. On the other
hand, the SBM item should have a unique identifier field to hold a reference to an
item in the external tool. This could be two fields, such as Database Name and Item
ID.

Part 1: Basic Orchestration Topics

176 Solutions Business Manager (SBM)

http://knowledgebase.serena.com

• If data is the same among SBM environments, create a working data element to hold
the data. If the data is different among environments, store the data in auxiliary
tables and retrieve the information dynamically depending on the situation. The
following items describe this principle in more detail, using authentication data as an
example.

▪ In a connector scenario, authentication data is likely to be the same for different
environments (such as Development, Testing, and Production). Normally, if you
are using SBM Web services, no authentication credentials are needed; however,
you can hard-code a designated user in the SBM Web services auth element to
override the calling user if the permissions for the calling user are not adequate.
Make sure that the overriding user has all of the permissions the workflow needs
(for example, permission to read table data, update items, and so on). If you
need to override the calling user, create working data elements to hold and store
the authentication data for the SBM user.

▪ In a direct SBM-to-external tool scenario, the authentication data for users can be
different among environments. By default, the workflow runs in the context of
who invoked it. It is a good practice to store the authentication data for each user
in an auxiliary table. The orchestration workflow queries the data based on the
user and then stores it in working data elements.

Whether the user name and password are stored in working data or in an auxiliary
table depends on the following:

▪ Whether the authentication data might need to be modified by an administrator in
the auxiliary table. Modifications could be needed if the authentication data is
different among environments or if the company policy is to change the data
regularly. If this data is stored in working data, it is more difficult to change and
requires redeploying the process app.

▪ Whether there are policies concerning where sensitive data like user names and
passwords are stored. For example, you might not want developers to have
access to the user name and password for the payroll system.

Because access to auxiliary tables require a set of permissions, you might need to
put the SBM user name and password in the working data. To keep this information
private, you can use HTTPS for your Web service calls.

• If you are calling a Web service from an orchestration, and the call requires a
certificate for authentication, ensure that your certificate contains the clientAuth
property if it is required. For example:

#8: ObjectId: 1.2.29.37 Criticality=false

ExtendedKeyUsages [

1.2.3.1.5.5.8.2.2

clientAuth

serverAuth

]

SBM Orchestration Guide 177

Steps
Best practices for step usage follow:

• Use ForEach steps to always process every item in an array element.

• Use While steps to process an item only if a certain condition exists before entering
the loop and while in the loop.

• Use Calculate steps to perform manipulations such as string concatenation and data
conversion. You can also use Calculate steps to store intermediate data that needs
to be extracted from previous Service steps or events in the workflow, as described
below.

• Use Calculate steps to extract a specific element from an array of elements. The
most common use is to extract a specific field from the extendedField of a response
from a "GetItem" operation. For example:

SBM_GetItemResponse:SBM_GetItem.GetItemResponse.return.item.extendedField
→[id.dbName="PRODUCT_BACKLOG"].value[internalValue]

• Do not use Calculate steps to transform large amounts of data because it requires a
large number of Calculate steps. It is better to use a Web service to do this.

• Use only the number of Calculate steps that you need. Excessive Calculate steps
can slow orchestration workflow processing.

• If you use several Calculate steps to achieve a single result (such as transforming
one data structure into another), group those steps into a Group step and give it a
name that describes the transformation.

• Do not use working data elements to store data that can be mapped directly from
the outputs of a previous Service step to the inputs of a subsequent Service step.
For example, the ItemId of an SBM_GetItem Service step can be mapped directly
as an input to an SBM_UpdateItem Service step.

• Consider using the main branches from a Decision step to handle expected use
cases, and reserving the Otherwise branch for errors where none of the expected
cases occur.

• Use Scope steps to create a structure that handles faults that occur during the
execution of a Web service.

• Use Group steps to organize steps that together perform a larger set of logic.

Step Functions
The expressions used in Calculate, ForEach, and While steps can contain a variety of
Supported XPath Functions [page 33]. Best practices for step function usage follow:

• Use the NUMBER function to convert text to integers. Use the STRING function to
convert integers to text.

• The CONCAT function supports the concatenation of any number of arguments. When
you use the CONCAT function, provide all arguments in a single call to build a text
string; do not use nested CONCAT calls.

Part 1: Basic Orchestration Topics

178 Solutions Business Manager (SBM)

• Use the STRINGLENGTH function to determine if a text element is empty or has data.
For example, use STRINGLENGTH(SomeElement) = 0 instead of SomeElement = "" and
STRINGLENGTH(SomeElement) > 0 to determine whether a text element contains data.

• When you test for a negative (does not contain), use the NOT function to turn a
branch into a positive. For example, use NOT(CONTAINS(SomeText, "some string")) for a
branch that is taken when the SomeText element does not contain "some string."

Working Data Elements
Best practices for working data element usage follow:

• If you have a common set of data that is used in multiple places in the workflow (for
example, authentication credentials), create working data elements that store the
data in one place, instead of setting the data as default values in every Service
step. You can then map the working data to the authentication inputs for the steps.
If you need to change the credentials later, you can do it in working data one time,
instead of in each step.

Important: If the values differ among environments, store the data in an
auxiliary table and query the table to populate the working data at the
beginning of the orchestration workflow.

• Use library types for elements where applicable. For example, use the the
sbmappservices72 auth type instead of separate data elements for userId and
password. This lets you map one working data element to one Service step data
element instead of two.

Note: To use library types, right-click a new working data element, select
Type, select Select from Type Library, and then select the type from the
Select Library Type Dialog Box [page 55].

• Store SBM itemID inputs as text, because the sbmappservices72 operations all
expect text values.

• Provide working data elements to store intermediate data extracted from array
elements. For example, use ItemProductBacklog to store:

SBM_GetItem.GetItemResponse.return.item.extendedField
→[id.dbName="PRODUCT_BACKLOG"].value[internalValue]

• Generally, you will use quotes to surround string constants in working data variables.
When working with string constants that contain quotation marks, use either single
or double quotes to surround string constants, depending on the type of quotation
mark in the string. For example, to insert a single quote, surround the string
constant with double quotes. To insert a double quote, surround the string constant
with single quotes. If you do not need to specify either type of quote in the content,
you can use either single or double quotes to surround the string constant.

Web Services
SBM includes two Web services that provide numerous operations: sbmappservices72
and sbmadminservices72. Best practices for Web service usage follow:

• Never use both display names and interval values. The display name is what the user
sees and the internal value is what is stored in the database. For text fields these are

SBM Orchestration Guide 179

the same, but for many field types they are completely different. Setting the display
name and internal value to the same value will prevent the field from being updated.
For example:

▪ A Selection field's display name could be High, but its internal value could be 13
(the ID of the record in the TS_SELECTIONS table.)

▪ A transition's display value could be Delegate, but its internal value could be
WorkflowName.Delegate.

• Make sure the values for Selection, Relational, User, and Group fields (Single and
Multi-) in SBM and the external tool match exactly. For example, if the display value
is used in one, make sure the display value, not the internal value, is used in the
other. In Multi-Relational fields, use arrays to use display values or internal values
consistently.

• When you need to create and assign values to extended fields, create the array
elements directly in the Service steps and assign values to them directly, instead of
trying to dynamically create them.

• The createDate and createdBy data elements represent the Submit Date and
Submitter fields in the item. (The SBM Web services use these data element names
instead of the database field names.)

• Orchestrations are not intended to be used to process very large blocks of data or
file attachments. For example, the sbmappservices72 GetFileAttachment call
enables you to retrieve file attachments for a given item; however, you should avoid
using this call in an orchestration because orchestrations are not designed to handle
this kind of data efficiently. If this is unavoidable in your application, set the
attachment element in the response message to an empty string as soon as the
reason for bringing the attachment into the orchestration has been satisfied before
the orchestration finishes. This frees the attachment data block and should allow the
system to recycle the memory. Otherwise, the Orchestration Engine will persist the
attachment to the Orchestration Engine database as part of the response message.
This can cause orchestration processing to take a long time and cause unnecessary
space to be allocated in the Orchestration Engine database.

Note: See the SBM Web Services Developer's Guide for detailed usage
information and best practices for each operation.

Event Handling
Each orchestration workflow should handle only one type of event. This can be achieved
even if an event needs to either create a new item if one does not yet exist, or update an
item if one does exist. The same event can be consumed by two workflows, one for
"create" and one for "update." For example, the "create" workflow would check whether
the item exists and end if it does, or process it if it does not. The "update" workflow would
check whether an item exists and end if it does not exist, or process it if it does exist.

In most connector orchestration process apps, there are six orchestration workflows to
handle events:

• Create an SBM item from an external item.

• Update an SBM item from an external item.

Part 1: Basic Orchestration Topics

180 Solutions Business Manager (SBM)

• Delete an SBM item from an external item. (This rarely happens because the item
should instead be closed.)

• Create an external item from an SBM item.

• Update an external item from an SBM item.

• Delete an external item from an SBM item. (This is rarely used because most process
apps do not allow users to delete items.)

If you want to raise an event from an external tool that will invoke an orchestration
workflow, define the interface in a custom event definition and then export a WSDL file
from the event definition. The external tool uses the WSDL file to call Web services that
raise events. This is described in About Application Links and Event Definitions [page 28].

You can design SBM and external tools to provide operations that expose high-level
business granularity. For example, you could have a set of orchestration workflows that
include "create," "transition" (update), and "delete" operations that are invoked by
transitions in the application workflow. You could have similar orchestration workflows
that are invoked by the external tool.

Note: The custom event definition is simply a description of the events. It does
not automatically implement an event generator from the external tool.

When SBM Application Engine calls the Orchestration Engine via the ALF event
mechanism, it sends any empty numeric primary table fields using the following max
values: 4294967295 for floating point or fixed precision number and 2147483647 for an
integer field. These numbers are defined constants in the SBM Application Engine. You can
avoid this by: making any numeric fields that you send on an event required, giving them
a default value, or by ensuring the user provides a value by some other means. If that is
not possible, test for these max values in any orchestrations that might receive them and
handle the case as appropriate for your application (for example, by changing the value to
0).

Scalability
This section provides best practices for designing orchestration workflows to maximize
performance and scalability.

• An application that performs large-scale data transformations will not scale well if it
is implemented using an orchestration. Instead of using a single orchestration to
process a large number of items, break the work into smaller chunks or consider
using another method to process the data. In general, use orchestrations only to
enable collaboration between systems and users.

• Use orchestration workflows to solve the following business problems:

▪ Collaboration with existing legacy systems: If a legacy system can receive
Web service calls, it can be called from asynchronous orchestration workflows
that are executed during transitions in an application workflow.

Important: It is recommended that you use asynchronous (not
synchronous) orchestration workflows to do this. See Usage [page 175]
for synchronous orchestration workflow limitations.

SBM Orchestration Guide 181

▪ Collaboration with SOA capable systems: Application workflows (also known
as "human workflows") can easily be integrated with other SOA (service-oriented
architecture) systems. These integrations use orchestration workflows initiated
from the human workflow to call Web services for passing data to and receiving
responses from the external systems. In addition, because the Event Manager
can be called as a Web service, asynchronous orchestrations can be initiated from
events occurring in the external systems to communicate back to the SBM
application.

▪ Intelligent data enrichment: Users make decisions and take actions based on
information available within the system. Often they can make better decisions if
they have access to related information stored outside of the system. A
synchronous orchestration workflow can implement business logic to collect and
coordinate data from several sources to present in a form. For example, a form in
a credit approval application can include a customer's credit information.

▪ Validation: Synchronous orchestration workflows that use programming
constructs such as comparisons, string and number manipulation, and loops can
be used to validate data that users entered. Validation can also occur through the
use of JavaScript in custom forms.

▪ Process-level synchronization: In this scenario, the data between two or more
systems is continuously synchronized as items flow through various business
processes. Another synchronization scenario is not suitable for orchestration
workflows and is described below.

• Do not use orchestration workflows to perform the following tasks:

▪ Visual programming: SBM Composer provides the ability to visually create
orchestration workflows using constructs such as loops, decisions, data
manipulation, and fault handling. While it is possible to use these constructs as a
general purpose programming language to create complex procedural programs,
it is discouraged. It is better to use these constructs to apply business logic while
coordinating or orchestrating the Web services called in the workflow.

Drawbacks of adding long modules within orchestration workflows include:
orchestration workflows become too long, so they are difficult to view, debug, and
maintain; designers lose the benefit of compile time checks that other languages
such as Java offer; and performance of these constructs is nowhere near as fast
as that of traditional programming languages. Complex logic or data manipulation
should be moved out of orchestration workflows and into Web services that can
be invoked as a part of the orchestration workflow.

▪ ETL processing: Data warehousing Extract, Transform, and Load (ETL)
processing is data intensive and requires minimum overhead for each record and
very fast data transformation processing. Implementing ETL with an orchestration
workflow entails at least two Web service calls for each record that is processed,
as well as the overhead for each record for data transformation. Using an
orchestration workflow for ETL processing results in poor performance and
unacceptably complex visual programming.

▪ Batch process synchronization: In this scenario, synchronization takes place
after the fact in a batch process. It involves processing a large number of records
in multiple systems to ensure that they remain synchronized after changes to one
or more system. An example of this is synchronizing a customer or product

Part 1: Basic Orchestration Topics

182 Solutions Business Manager (SBM)

master database with data stored in distributed systems. To achieve this using an
orchestration workflow, you would need to iterate through each record on each
system, making multiple Web service calls for each iteration; comparing the data
between systems, and if necessary, update the data by making additional Web
service calls.

Security
This section discusses security considerations for orchestrations.

To call a service using HTTPS from an orchestration workflow, you must establish a trust
by importing the SSL certificate that the service uses. This applies to REST services called
via the RESTCaller as well.

To execute an external Web service call from SBM using SSL, the SBM certificate
truststore must contain the external service's public certificate (in the event that the
certificate does not already exist in the truststore). Therefore, you must import the
service's public certificate into either the Windows or Tomcat truststore—depending on
which SBM component performs the call.

For example, if the external Web service call is invoked from a workflow transition, you
must add the public certificate to the Windows truststore in the IIS tab on the IIS server.
This ensures that SBM Application Engine calls are trusted by the external service.
Similarly, you must add the public certificate to the Tomcat truststore to ensure that SBM
Orchestration Engine calls are trusted by the external service. For example, if you create
an SBM orchestration that contains an external Web service call that is secured by SSL,
the public certificate for that service must be added to the Tomcat truststore.

Consult your SBM administrator, and use the Manage Trusted Certificates option in
SBM Configurator (SBM On-Premise only) to import the service's public certificate into the
JVM truststore. The truststore may already contain some public certificates, but if you
create your own certificates or use certificates that are newer than those the truststore,
the truststore must be updated to successfully complete calls over HTTPS.

SBM Orchestration Guide 183

Part 1: Basic Orchestration Topics

184 Solutions Business Manager (SBM)

Chapter 6: Orchestration Tutorial

The exercises in this tutorial demonstrate how to use SBM Composer to create
orchestrations. This tutorial takes approximately 1/2 hour to complete, and requires that
you first complete the process app tutorial, which also takes approximately 1/2 hour. See
the SBM Composer Guide for the process app tutorial.

In the orchestration tutorial, you create two synchronous orchestration workflows, and
one asynchronous orchestration workflow with a Web service. All three workflows are
necessary for the process app to work correctly.

This tutorial contains the following steps:

• Step 1: Create an Orchestration [page 185]

• Step 2: Create a Synchronous Pre-Transition Orchestration Workflow [page 185]

• Step 3: Create a Synchronous Post-Transition Orchestration Workflow [page 187]

• Step 4: Create an Asynchronous Orchestration Workflow [page 189]

• Step 5: Validate the Process App [page 191]

• Step 6: Publish the Process App [page 192]

• Step 7: Deploy the Process App [page 192]

• Step 8: Run the Process App [page 193]

• Orchestration Reminder List [page 193]

Step 1: Create an Orchestration
To create an orchestration:

1. In App Explorer, right-click MyProcessApp, point to Add New, and then select
Orchestration.

2. In the New Orchestration dialog box, enter MyOrch in the Name box.

3. Click OK to close the New Orchestration dialog box.

Application Links, Orchestration Workflows, Type Library, and Web Services
appear under the new MyOrch heading in App Explorer.

4. Continue to Step 2: Create a Synchronous Pre-Transition Orchestration Workflow
[page 185].

Step 2: Create a Synchronous Pre-Transition
Orchestration Workflow
In this exercise, you use the Action Wizard to create the SynchBefore orchestration.
SynchBefore is a synchronous pre-transition orchestration workflow. When SynchBefore is

SBM Orchestration Guide 185

invoked from Submit transition, it updates (adds text to) the Title box of the transition
page before the page loads.

To create a pre-transition orchestration workflow with reply:

1. In App Explorer, under the Application Workflows heading, select
MyAppWorkflow.

2. In the application workflow editor, right-click the Submit transition, and select
Show Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard asks, "Which type of action do you want to execute?"

4. From the list of action types in the Step 1 box, select Orchestration Workflow.

5. In the Step 2 box, click the and continue executing (asynchronous) link, select
and wait for reply (synchronous) from the list, and then click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

6. In the Step 1 box, select Before, and then click Next.

You do not do anything in the Step 2 box, which reads "Invoke an orchestration
workflow and wait for reply (synchronous), before this transaction occurs".

The Action Wizard asks, "Which orchestration workflow do you want to call?"

7. On the menu under Step 1, select (Add new workflow...).

You do not do anything in the Step 2 box, which still reads "Invoke an orchestration
workflow and wait for reply (synchronous), before this transaction occurs".

8. In the Event with Reply dialog box, do the following:

a. Change the Name to MyOrchWFWR (which is short for MyOrch Workflow with Reply).

b. From the Orchestration list, select MyOrch.

c. In the Workflow box, change the name to SynchBefore.

d. In the Fields used by event column, select the Title check box.

e. In the Fields returned by event column, select the Title check box.

f. Click OK.

You do not do anything in the Step 2 box, which now reads "Invoke an
orchestration workflow and wait for reply (synchronous), before this transaction
occurs, Call MyOrchWFWR | If form is invalid, don't rerun this service."

9. In the Action Wizard, without changing anything in the Step 2 box, click Finish.

A new icon appears next to the transition name in the application workflow editor
indicating that an action is associated with the transition. The action is also listed on
the Actions tab of the Property Editor.

In addition, in App Explorer, under the MyOrch heading, SynchBefore appears
under Orchestration Workflows, and MyOrchWFWR appears under the MyApp
heading, under Orchestration Links.

Part 1: Basic Orchestration Topics

186 Solutions Business Manager (SBM)

10. In App Explorer, under MyOrch, under Orchestration Workflows, select
SynchBefore.

11. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the line between the Start and End steps.

12. On the Options tab of the Property Editor, in the Target section, enter the following
expression: EventNoticeWithReply\Extension\Title

13. In the Expression section, enter the following function: STRING("Replace this
text with something unique, 25 characters or less.")
For more information about creating expressions, see About the Expression Editor
[page 32].

14. In the orchestration workflow editor, select the End step.

15. On the Data Mapping tab of the Property Editor, expand the Extension data
element, locate the Title data element, select the corresponding cell in the Source
elements column, and then click the down arrow.

16. In the Select a Source popup, expand SynchBefore, Inputs,
EventNoticeWithReply, and Extension; select Title; and then click OK.

SynchBefore\EventNoticeWithReply\Extension\Title appears in the Source
elements column.

17. Continue to Step 3: Create a Synchronous Post-Transition Orchestration Workflow
[page 187].

Step 3: Create a Synchronous Post-Transition
Orchestration Workflow
In this exercise, you use the Action Wizard to create the SynchAfter orchestration
workflow. SynchAfter is a synchronous post-transition orchestration workflow. When
SynchAfter is invoked from the Submit transition, it appends the text in the Title box of
the transition page before the state form loads. The new appended text appears in the
Title box on the state form.

To create a synchronous post-transition orchestration workflow:

1. In App Explorer, under the Application Workflows heading, select
MyAppWorkflow.

2. In the application workflow editor, right-click the Submit transition, and then select
Show Actions.

3. On the Actions tab of the Property Editor, click New.

The Action Wizard asks, "Which type of action do you want to execute?"

4. From the list of action types in the Step 1 box, select Orchestration Workflow.

5. In the Step 2 box, click the and continue executing (asynchronous) link, select
and wait for reply (synchronous) from the list, and then click Next.

The Action Wizard asks, "When do you want to call the orchestration workflow?"

SBM Orchestration Guide 187

6. In the Step 1 box, select After, do not change anything in the Step 2 box, and
then click Next.

The Action Wizard asks, "Which orchestration workflow do you want to call?"

7. In the list under Step 1, select (Add new workflow...).

8. In the Event with Reply dialog box that opens:

a. Change the Name to "MyOrchWFWR2" (which is short for MyOrch Workflow With
Reply #2).

b. From the Orchestration list, select MyOrch.

c. In the Workflow box, change the name to SynchAfter.

d. In the Fields used by event column, select the Title check box.

e. In the Fields returned by event column, select the Title check box.

f. Click OK.

9. In the Action Wizard, click Finish.

The action is listed on the Actions tab of the Property Editor.

In addition, in App Explorer, under the MyOrch heading, SynchAfter appears under
Orchestration Workflows, and MyOrchWFWR2 appears under the MyApp
heading, under Orchestration Links.

10. In App Explorer, under MyOrch, under Orchestration Workflows, select
SynchAfter.

11. In the New Items section of the Step Palette, drag a Calculate step onto the line
between the Start and End steps.

12. On the Options tab of the Property Editor, in the Target section, enter the
following expression: EventNoticeWithReply\Extension\Title.

13. In the Expression section, enter the following function:
CONCAT(EventNoticeWithReply\Extension\Title, " Appended by
SynchAfter.")

Note: Be sure to include the space after the comma.

For more information about creating expressions, see About the Expression Editor
[page 32].

14. In the orchestration workflow editor, select the End step.

15. On the Data Mapping tab of the Property Editor, expand the Extension data
element, locate the Title data element, select the corresponding cell in the Source
elements column, and then click the down arrow.

16. In the Select a source popup, expand SynchAfter, Inputs,
EventNoticeWithReply, and Extension; select Title; and then click OK.

Part 1: Basic Orchestration Topics

188 Solutions Business Manager (SBM)

SynchAfter\EventNoticeWithReply\Extension\Title appears in the Source
elements column.

17. In App Explorer, under the MyApp heading, under Orchestration Links, select
MyOrchWFWR2.

18. On the MyOrchWFWR2 tab, the Title check boxes of the Fields used by event
and Fields returned by event columns should be selected.

19. Continue to Step 4: Create an Asynchronous Orchestration Workflow [page 189].

Step 4: Create an Asynchronous Orchestration
Workflow
In this exercise, you add an event without reply as a transition action on the Close
transition of MyAppWorkflow.

Asynch is an asynchronous orchestration workflow. When Asynch is invoked from the
Close transition, it creates a new item in MyOtherAppProject. The Title box of the new
item contains the text that was added by the SynchBefore and SynchAfter
orchestration workflows and some additional text.

To create an event without reply:

1. Add a second application workflow called MyOtherAppWorkflow:

a. In App Explorer, right-click the Application Workflows heading, and then
select Add New Workflow.

b. On the General tab of the Property Editor, change the Name field to
MyOtherAppWorkflow, and then press TAB.

2. In App Explorer, under the Application Workflows heading, select
MyAppWorkflow.

3. In the application workflow editor, right-click the Close transition, and select Show
Actions.

4. On the Actions tab of the Property Editor, click New.

The Action Wizard asks, "Which type of action do you want to execute?"

5. From the list of action types in the Step 1 box, select Orchestration Workflow.

6. Without changing anything, click Next.

The Action Wizard asks, "What do you want to affect?"

7. Without changing anything, click Next.

The Action Wizard asks, "Which condition do you want to check?"

8. Without changing anything, click Next.

The Action Wizard asks, "Which orchestration workflow do you want to invoke?"

9. In Step 1, select (Add new workflow...).

Close appears and is selected in the Step 1 list.

SBM Orchestration Guide 189

10. Without changing anything in the Step 2 box, click Finish.

A new icon appears next to the transition name in the application workflow editor
indicating that an action is associated with the transition. The action is also listed on
the Actions tab of the Property Editor.

In addition, in App Explorer, under the MyOrch heading, Close appears under
Orchestration Workflows and MyAppEventDefinition appears under
Application Links.

11. In App Explorer, under Application Links, select MyAppEventDefinition.

12. On the General tab in the Property Editor, change the Name to MyOrchWFNR (which is
short for MyOrch Workflow No Reply), and then press the Tab key.

13. Under MyOrch, under Orchestration Workflows, select Close.

14. On the General tab of the Property Editor, change the Name to Asynch, and then
press the Tab key.

15. In the New Items section of the Step Palette, drag and drop a Calculate step
onto the line between the Start and End steps.

16. On the Options tab in the Property Editor, in the Target section, enter the following
expression: EventNotice\Extension\Title.

17. In the Expression section, enter the following string function:
CONCAT(EventNotice\Extension\Title," This issue was created by
Asynch.")

Note: Be sure to include the space after the comma.

For more information about creating expressions, see About the Expression Editor
[page 32].

18. In the New Items section of the Step Palette, drag a Service step onto the line
between the Calculate and End steps.

sbmappservices72 appears under Web Services, under the MyOrch heading.

SBM Composer automatically adds the SBM Web Service (sbmappservices72) to new
orchestrations. (For more information, see the SBM Web Services Developer's
Guide.)

19. On the General tab of the Property Editor, from the Service list, select
sbmappservices72.

Note: You can also add another Web service by selecting (add new
service...) on the Service menu. In the Web Service Configuration
dialog box that opens, select the Web service's WSDL file on the WSDL
menu or click the browse button.

20. From the Operation menu, select the CreatePrimaryItem Web service operation.

21. On the Data Mapping tab, expand the project data element, locate the
internalName data element, and then select the corresponding cell in the Default
value column.

Part 1: Basic Orchestration Topics

190 Solutions Business Manager (SBM)

22. In the Default value column, enter the following text:
USR_MYOTHERAPP.MYOTHERAPPPROJECT. This is the name of the project into which the
new item will be submitted.

23. Expand the item data element, locate the title data element, select the
corresponding cell in the Source elements column, and then click the down arrow.

24. In the Select a source popup, expand Asynch, Inputs, EventNotice, and
Extension; select Title; and then click OK.

25. Continue to Step 5: Validate the Process App [page 191].

Step 5: Validate the Process App
SBM Composer validates a process app before publishing it, but you can also validate a
process app at any time by performing steps 1 and 2 in the following exercise.

Tip: While you are creating orchestration workflows, you should validate often
to catch potential problems before you attempt to publish and deploy a process
app.

To validate a process app:

1. On the Deployment tab of the Ribbon, click the Validate button.

If the process app is ready to be published, the Validation Results advises you that
the validation succeeded.

2. To see what a validation error looks like:

a. In App Explorer, under the MyOrch heading, under Orchestration Workflows,
select any of the orchestration workflows.

b. In the New Items section of the Step Palette, drag a Calculate step onto the
orchestration workflow editor, and drop it anywhere on the line between the
Start and End steps.

c. Click Validate again.

Details about the errors, warnings, and messages appear in the Validation
Results. If the Validation Results is not available, on the Home tab of the Ribbon,
in the Common Views area, select the Validation Results check box. If this
check box is already selected and the details are still not visible, select the
Validation Results tab in the area under the editor pane.

Note: For more information about the Validation Results, see the SBM
Composer Guide. For information about validation errors, see
Troubleshooting Orchestrations Using the Validation Results [page
195].

3. To return the orchestration workflow to its valid condition, delete the Calculate step
that you just added.

4. On the Deployment tab of the Ribbon, click the Validate button again.

The Validation Results should show that the validation succeeded.

5. Continue to Step 6: Publish the Process App [page 192].

SBM Orchestration Guide 191

Step 6: Publish the Process App
To publish a process app:

1. Click the Composer button, and then click Publish. If the process app was not saved
yet, or if any part of the process app changed since the last time it was saved, a
message box opens reminding you to save the changes. Click OK.

2. When the Check In Design Elements dialog box opens, you can enter an optional
comment in the Comment box.

3. Click OK.

The Publish Process App dialog box opens.

4. You can enter an optional comment in the Comment box.

5. In the Label box, you can modify the text that identifies this version of the process
app.

6. Under Visibility, select the Allow others to deploy this version of the process
app check box.

7. Click Publish.

A message box opens indicating whether the process app published successfully or
the operation failed. (See Troubleshooting Orchestrations Using the Validation
Results [page 195] for information about publish operation errors.)

8. Click OK.

9. Continue to Step 7: Deploy the Process App [page 192].

Step 7: Deploy the Process App
To deploy a process app:

1. On the Deployment tab of the Ribbon, click the Deploy button.

The Deploy Process App dialog box opens.

2. From the Environment list, select a runtime environment, and then click Deploy.

In the Activity Log, a message appears notifying you that the deployment started
successfully.

3. Wait for the deployment to complete.

• If the deployment succeeds, the following message appears in the Activity Log:
"Deployment of 'MyProcessApp' has completed."

• If the deployment fails, the following message appears in the Activity Log:
"Deployment of 'MyProcessApp' has aborted or failed."

If the Activity Log is not available, on the Home tab of the Ribbon, in the Common
Views area, select the Activity Log check box. If this check box is already selected
and the details are still not visible, select the Activity Log tab in the area under the
editor pane.

Part 1: Basic Orchestration Topics

192 Solutions Business Manager (SBM)

For more information about the Activity Log, see the SBM Composer Guide. For
information about deployment errors, see Troubleshooting Orchestrations Using the
Validation Results [page 195].

4. Continue to Step 8: Run the Process App [page 193].

Step 8: Run the Process App
In this exercise, you test MyProcessApp by running it in SBM Work Center.

To run a process app in SBM Work Center:

1. Log on to the SBM Work Center.

Tip: In SBM Composer, you can click the Work Center button on the
Launch tab of the Ribbon to do this. You can also navigate directly to
http://serverName/workcenter.

2. Click the MyApp icon.

3. Click the +New button.

4. On the Browse tab, click the MyAppProject link.

The first transition page opens, and the title contains the text that you specified in
the Calculate step of the SynchBefore orchestration workflow: Replace this
text with something unique, 25 characters or less.

5. Delete the text in the Title box, enter some unique text (fewer than 25 characters).

6. Select a user from the Manager list, and then click OK.

The first state form opens, and the title now contains the text you entered in the
previous step followed by the text that you specified in the Calculate step of the
SynchAfter orchestration workflow: Appended by SynchAfter.

7. Click the Assign button.

The second transition form opens.

8. Select a user from the Employee list, and then click OK.

9. Click Close and then click OK on the page that opens. The Asynch orchestration
workflow is invoked, and it creates a new item in MyOtherAppProject.

10. Perform a search for the item.

In the search results list, the item's Title column contains the following: [Your
unique text] Appended by SynchAfter. This issue was created by Asynch.

11. To view the item, click item row.

Orchestration Reminder List
As you begin creating your own orchestration workflows, keep these points in mind:

• Make sure you have access to SBM Composer, SBM Work Center, and SBM
Application Administrator.

SBM Orchestration Guide 193

• If you plan to use Web services, make sure you can specify the location for each Web
service's WSDL file.

• Make sure that the process app you created or selected contains an application, that
it has a workflow defined, and that the workflow contains at least one transition
between states.

• Before creating an orchestration workflow, make sure you know what data must be
passed from the application to the orchestration workflow.

Part 1: Basic Orchestration Topics

194 Solutions Business Manager (SBM)

Chapter 7: Troubleshooting Orchestration
Workflows

This section contains the following topics about the resources and tools that you can use
to troubleshoot orchestration workflows. You can also use the Scope, Throw, and
Compensate steps to help you troubleshoot orchestration workflows (see Using the
Scope, Throw, and Compensate Steps to Handle Faults From Web Services [page 96].

• Troubleshooting Orchestrations Using the Validation Results [page 195]

• Troubleshooting Orchestrations Using the Common Log Viewer [page 196]

• Troubleshooting Orchestrations Using Error Messages [page 200]

• Retrying Failed Asynchronous Events [page 201]

• Limitations on WSDL Files [page 201]

• Debugging for Development and Support [page 203]

Troubleshooting Orchestrations Using the Validation
Results
You can use the Validation Results to troubleshoot orchestration workflows before you
publish and deploy them. To learn how to use the Validation Results, see the SBM
Composer Guide.

Following are some typical situations that generate error and warning validation messages
for orchestration workflows:

SBM Orchestration Guide 195

• You did not map a required data element or provide a default value for it in the
Select a Source popup. (Error)

• You failed to enter a required expression or you entered an invalid expression, for
example, in the Target section of a Calculate step or in the Rule section of a
While step. (Error)

• You did not provide a compensation handler for a scope. (Warning)

• You did not specify a default value for a working data element. (Warning)

Important:

SBM 10.1.3 introduced improved support for multi-relational, multi-user, multi-
group, and multi-select fields. These changes may cause validation errors in
some orchestrations that use multi-type fields when you open the process app
in SBM Composer.

Prior to 10.1.3, multi-relational fields were passed as an array of strings in the
EventNotice definition. In 10.1.3 and higher, the EventDefinition passes a new
Complex Type—Multi_Type—which consists of an array of "Items", where
"Item" is a string.

For example, the statement:

STRINGLENGTH(EventNotice\Extension\MyRelationalField[1])>0

Should be expressed as follows after 10.1.3:

STRINGLENGTH(EventNotice\Extension\MyRelationalField\Item[1])>0

If you receive validation errors, review the EventNotice and add \Item manually
if it has not been automatically upgraded by SBM Composer.

Troubleshooting Orchestrations Using the Common Log
Viewer
This section demonstrates how to work with Common Log Viewer messages to
troubleshoot, or debug, orchestration workflows. (The Common Log Viewer is described in
the SBM Composer Guide.)

Note: Unhandled Web service faults are the most common causes of
orchestration workflow failures. (See Using the Scope, Throw, and Compensate
Steps to Handle Faults From Web Services [page 96].)

If a process app that contains an orchestration workflow does not perform properly, there
might be a problem with the orchestration workflow. You can use the Common Log Viewer
to troubleshoot orchestration workflow-related runtime errors. The entries in the Common
Log Viewer provide an audit trail that you can use to diagnose these problems.

Part 1: Basic Orchestration Topics

196 Solutions Business Manager (SBM)

For example, you can determine why incorrect values were copied to working data
elements or Service step source elements during the execution of Calculate steps. To do
this, turn Debug Logging on, and select User messages only in the Message Filter
dialog box. The messages, which begin with "copying value," will show the actual values
that the Calculate steps copied.

Note: If a Calculate step is copying an XML element, the message will show
the value in XML format.

Web Service Faults
External Web services are called by Service steps in orchestration workflows by sending
request SOAP messages. (To the SBM Orchestration Engine, the SBM Application Engine is
an external Web service.) Web services also reply with SOAP messages. If an error occurs
during the processing of a request, a response SOAP message is returned that contains a
SOAP fault. Because orchestration workflows are actually Web services that are invoked
by other SBM components, they send and receive SOAP messages as well. (See About
SOAP Messages [page 36].)

In SBM, the SBM Application Engine invokes a synchronous orchestration workflow with a
SOAP message that is sent to the SBM Orchestration Engine. The SBM Orchestration
Engine returns a response SOAP message to the SBM Application Engine at the End step.

The SBM Application Engine or an external event invokes an asynchronous orchestration
workflow with a request SOAP message that it sends to the Event Manager. The Event
Manager relays the message to the SBM Orchestration Engine. For asynchronous
orchestration workflows, no response is returned.

During the execution of an orchestration workflow, SOAP messages returned from an
external Web service might contain a SOAP fault. The first step in debugging an
orchestration workflow using the Common Log Viewer is to look for errors that indicate a
SOAP fault. The last error that occurred in the orchestration workflow sequence usually
contains the most useful information.

Following are some typical situations that generate error messages for orchestration
workflows in the Common Log Viewer:

• You tried to pass an invalid value to the Web service.

• You did not specify the correct path for the WSDL.

• You failed to enter a required expression or you entered an invalid expression, for
example, in the Target section of a Calculate step or in the Rule section of a
While step.

Debugging Orchestration Workflows
This section presents the steps that you should take to debug the Service step. The
example demonstrates one of the most common errors that cause the execution of an
orchestration workflow to stop. This problem occurs when a Web service returns a
response SOAP message that contains a SOAP fault during execution of the workflow.

To debug orchestration workflows using the Log Viewer:

1. In the Common Log Viewer, click Refresh to see the latest messages.

SBM Orchestration Guide 197

2. On the Overview tab, look for errors in any of the orchestration workflows invoked
by the application workflow (project) that you submitted to.

Errors are indicated by numbers in the first position within the brackets next to the
name of the application workflow. For example, UserVerificationOWF [1/0/0/7]
indicates that there is one error messages, no warning messages, no info messages,
and seven debug messages in the Common Log Viewer for this orchestration
workflow.

Note: If there are no error messages, you should also look at any other
messages. Find the message with the most severe logging level that is the
farthest in the orchestration workflow sequence.

3. Select the orchestration workflow in the list, and then click the Details tab.

In the example, you would click UserVerificationOWF.

4. Locate any error messages on the list.

You would usually look for the error that occurred during the latest run, that is, the
one with the highest number.

For example, the following series of messages can be displayed when an
orchestration workflow is executed. (By default, all Common Log Viewer messages
appear in this format.) From the messages, you can see that something went wrong
with Service step VerifyUser.

Date Run Associated
element

Text

2/20/
2…

1 Asynch The Orchestration Engine received the
following message to invoke...

2/20/
2…

1
VerifyUser

A Web service is being invoked at Service
step VerifyUser, and the…

2/20/
2…

1
VerifyUser

A Web service was invoked at Service step
VerifyUser, and now the…

2/20/
2…

1
VerifyUser

A fault occurred during the execution of the
orchestration workflo…

5. Right-click the error message row, and then select Show Message on the menu.

6. The Message Detail dialog box opens and displays the entire error message. (Steps
7 and 8 relate to Service steps only.)

The following is part of the example error message. Note that the message (in bold
text) indicates an invalid User ID or password.

Part 1: Basic Orchestration Topics

198 Solutions Business Manager (SBM)

The fault is: <?xml version="1.0" encoding="UTF-16"?><AEWebservicesFault
xmlns="urn:sbmappservices72"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ae="urn:sbmappservices72" xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"
xmlns:diag="urn:SerenaDiagnostics" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
Invalid User ID or Password</AEWebservicesFault>.

7. In the Message Detail dialog box, click the Previous button to display the "A Web
service was invoked" message, and then locate the SOAP fault, shown below in bold
text.

A Web service was invoked at Service step VerifyUser, and now the
Orchestration Engine is receiving the following message:

<SOAP-ENV:Envelope
xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:ae='urn:sbmappservices72'
xmlns:c14n='http://www.w3.org/2001/10/xml-exc-c14n#'
xmlns:ds='http://www.w3.org/2000/09/xmldsig#'
xmlns:wsse='http://docs.oasis-open.org/wss/2004/01/oasis-2004
01-wss-wssecurity-secext-1.0.xsd'
xmlns:wsu='http://docs.oasis-open.org/wss/2004/01/oasis-20040
1-wss-wssecurity-utility-1.0.xsd'
xmlns:xsd='http://www.w3.org/2001/XMLSchema'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'><SOAP-E
NV:Header></SOAP-ENV:Header><SOAP-ENV:Body><SOAP-ENV:Fault
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'><f
aultcode>SOAP-ENV:Server</faultcode><faultstring>Invalid User
ID or Password</faultstring><detail><ae:AEWebservicesFault
xmlns:ae='urn:sbmappservices72'>Invalid User ID or
Password</ae:AEWebservicesFault></detail></SOAP-ENV:Fault></S
OAP-ENV:Body></SOAP-ENV:Envelope>

8. Often a SOAP fault is returned because some invalid data was sent to the Web
service. To see the invalid User ID or Password that was sent by the VerifyUser
Service step call to the SBM Application Engine, click Previous to view the "A Web
service is being invoked" message. The values that were sent with the Web
service call are shown in bold text.

A Web service is being invoked at Service step VerifyUser, and the
Orchestration Engine is sending the following message:

<env:Envelope
xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsd='http://www.w3.org/2001/XMLSchema'><env:Header><n:S
ecurity SOAP-ENV:mustUnderstand='0'
xmlns:n='http://docs.oasis-open.org/wss/2004/01/oasis-200401-

SBM Orchestration Guide 199

wss-wssecurity-secext-1.0.xsd'
xmlns:SOAP-ENV='null'></n:Security></env:Header><env:Body><de
faultNS1:IsUserValid
xmlns:bpws='http://schemas.xmlsoap.org/ws/2003/03/business-pr
ocess/' xmlns:defaultNS='urn:sbmappservices72'
xmlns:defaultNS1='urn:sbmappservices72'
xmlns:ns8='urn:sbmappservices72'><ns8:auth><ns8:userId>ZZZZ</ns
8:userId><ns8:password>XXXX</ns8:password></ns8:auth><ns8:log
inId xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:ns='http://www.eclipse.org/alf/schema/EventBase/1'
xmlns:s='http://www.eclipse.org/alf/schema/EventBase/1'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:type='xsd:string'
xmlns:xsd='http://www.w3.org/2001/XMLSchema'>XYZ</ns8:loginId
></defaultNS1:IsUserValid></env:Body></env:Envelope>

9. To go to the source of the problem, right-click in the error message row, and then
select Show Associated Element on the menu.

SBM Composer opens the appropriate design element in the workflow editor and
selects the design element associated with the error.

In the example, SBM Composer opens UserVerificationOWF in the workflow editor
and selects the VerifyUser Service step.

10. Correct the problem in the design element. (If the error was caused by sending
invalid data, configure the Service step to provide the correct data.)

In the example, you would enter a valid User ID and Password in the userID and
password data elements under auth.

Troubleshooting Orchestrations Using Error Messages
This section contains a list of error messages. Each entry in the list provides the actual
text of the message, an explanation of its cause, and a suggested solution. These
messages are likely to appear in the Common Log Viewer, but they might also be
displayed in error messages boxes or in other areas of SBM Composer.

Execution of the orchestration workflow is stopped because the size of the Web
service response has exceeded the allowable limit of {0} at Service step {1}.
{0} is the maximum allowable size, and {1} contains the name of the associated Service
step.

Explanation: A Web service response is limited to a certain size in Solutions
Business Manager. If the response to a Web service that is invoked by means of a
Service step in an orchestration workflow exceeds this limit, the orchestration
workflow is stopped. In addition, an error message containing a SOAP fault appears
in the Common Log Viewer for the associated Service step. This error message also
indicates the maximum allowable size for the response.

Solution: To handle the fault, you should place the Service step within a Scope
step and catch the fault in the Catch All branch of the FaultHandler. Also, you
should consider reducing the size of the response SOAP message's payload by

Part 1: Basic Orchestration Topics

200 Solutions Business Manager (SBM)

redesigning the way you invoke the Service step. For example, you could add
filtering if the Web service supports it.

Retrying Failed Asynchronous Events
The ability to manually retry or reprocess failed asynchronous orchestration events is
critical in situations where the processing of these events must be guaranteed 24 hours a
day, 7 days a week. An integration between SBM and an external system that uses an
event emitter mechanism is an example of this scenario. In this type of integration, the
external system is responsible for raising the event, while SBM is responsible for
processing it. It is possible that the event will not be processed successfully in the first
attempt. The manual reprocessing of failed events is a recovery mechanism for SBM data
that gets out-of-sync.

For example, you might have an external system that emits events to Service Support
Manager, with the expectation that SBM will process these events. For numerous reasons,
Service Support Manager may fail to process these events on a first attempt; the user
needs to know about the failures so he or she can reprocess them manually.

To identify and retry events:

1. Open the SBM Work Center error report.

2. Review the failure information to determine whether you want to retry the event.

3. Open SBM Application Repository.

4. In the navigation pane, from the Orchestration Engine view, select Event Manager
Log. In the list of asynchronous events that is displayed, failed events have
EVENT_FAILURE in the Status column. (You can create a filter to show only failed
events. For instructions, see the SBM Application Repository Guide or online help.)

5. To ensure that an event is the same event you investigated in the report before you
retry it:

a. Select the event.

b. Click Event Summary at the top of the list, or right-click the event and then
select Event Summary.

c. Check that the event ID from the report matches the event ID shown in the
Event Summary window.

6. To retry one or more events:

a. Select the event or events and then click Retry Event(s) at the top of the list.
Alternately, right-click the events and then select Retry Event(s). This
command will reprocess all failed orchestration workflows that were invoked by
each selected event. Orchestration workflows that succeeded or have not yet
completed will not be reprocessed.

b. Click OK in the confirmation message that appears.

Limitations on WSDL Files
If you are having problems with the orchestration workflows in your process apps, it might
be because the WSDL files you are using are not fully supported by SBM Composer.

SBM Orchestration Guide 201

Although SBM Composer supports most WSDL files, it has some limitations. Contact your
Web service provider to determine if any of the following restrictions apply:

• Only SOAP encoding may be used (not REST).

• Multi-part WSDL files are not supported.

• The WSDL must be WSI-BP (WS-I Basic Profile) compliant.

• Document/Literal is fully supported. Experimental support is available for the
following binding styles:

▪ Document/Encoded

▪ RPC/Literal

▪ RPC/Encoded

• HTTP binding is partially supported:

▪ HTTP/POST is supported (experimental)

▪ HTTP/GET is not supported

• Attachments are not supported.

• Recursive elements or types cannot be imported into an application; however, you
can import a WSDL that contains recursive elements into an orchestration workflow.

• Derived complex types are not completely supported in application workflows;
however, they can be used in orchestration workflows.

• Operation overloading, where the same name can apply to different operations in
different situations, is not supported.

• Attribute references are not completely supported.

• WSDLs might fail to import if they are not formatted correctly, or if they contain
functionality that is not supported by SBM Composer.

• The <choice> element is not supported.

• Creating a base type in SBM Composer and then overriding it with any of its
Extension types is not supported.

For example, when you create "SearchRecord" in the following sample code, you
get a child element named "record" of type "sObject". If this type is extended by
other types, such as "Employee" or "Hardware", you will not be able to change the
type of "record" to "Employee" type on the Data Mapping tab of the orchestration
workflow Property Editor. You can, however, create a working data element of type
"Employee".

<complexType name="SearchRecord">
<sequence>
<element name="record" type="ens:sObject"/>
</sequence>
</complexType>

Part 1: Basic Orchestration Topics

202 Solutions Business Manager (SBM)

• Creating arrays of varying lengths as Web service inputs is not supported. For
example, you can create an array on the Data Mapping tab of the orchestration
workflow Property Editor if you know how many records to create. However, if you
are unable to determine the number of records at design time, SBM cannot create
such an array.

• All WSDL definitions (wsdl:service, wsdl:binding, wsdl:portType, wsdl:message,
and wsdl:types) must be in the same namespace; splitting WSDL definitions into
more than one namespace is not supported, even if wsdl:import is used. However,
the XSD schemas that are declared or imported into the wsdl:types section can be
in namespaces that are different from the WSDL definitions namespace.

Debugging for Development and Support
Advanced options for debugging, such as setting the logging level to trace, are available in
Application Repository. Refer to the "Logging" section of SBM Application Repository Guide
for more information.

SBM Orchestration Guide 203

Part 1: Basic Orchestration Topics

204 Solutions Business Manager (SBM)

Chapter 8: Renew Utility

Restriction: This information pertains only to SBM On-Premise installations.

This chapter describes the orchestration engine renew utility, which enables you to
remove and restore orchestration workflow data from the database.

The renew utility is primarily used during an upgrade, but it can also be used if the
orchestration engine portion of an undeploy operation fails. For example, if the Application
Engine portion of the undeploy succeeds, but fails for the orchestration engine, invalid
deployments may remain in the database and consume resources that could be used
elsewhere at runtime. Or, if an orchestration requires several events to start and it then
stops (for whatever reason), several events may be saved in the database. The renew
utility can clear these from the database in that scenario. In prior releases, the utility was
used as part of routine maintenance, but that is no longer applicable under ODE because
ODE does not accumulate deployments and runtime data the same way.

• Running Renew [page 205]

• Extended Character Handling [page 207]

• Registry Access Restriction Handling [page 207]

• Problematic Server Configurations [page 207]

• Renew Commands [page 208]

Running Renew
The renew.jar file is located in the installDir\SBM\Common\Misc\renew directory.

The following procedure describes how to prepare for and run the renew utility. For a
description of the commands and their usage and output, see Renew Commands [page
208].

Important: Renew must be run locally from the Orchestration Engine server. It
uses libraries from the Orchestration Engine server Tomcat installation and uses
the Windows registry to find that installation.

Renew is a command-line Java application, and requires the JRE in the Windows "Path"
system variable. You can use the JRE and create a small batch file that surrounds your
particular usage of renew. The following is an example of the file content, and shows the
path to the JRE in the default SBM directory:

Setlocal
set JAVA_HOME=c:\Program Files\Serena\SBM\Common\jre1.8
path=%path%;%JAVA_HOME%\bin
java -Dfile.encoding=UTF-8 -jar renew.jar
endlocal

Modify and use the provided batch files located here:

SBM Orchestration Guide 205

installDir\SBM\Common\Misc\renew\renew_templates

To run renew:

Important: Back up your Orchestration Engine database before you run renew.
For production systems and complex situations, it is a best practice to perform a
trial run on a test system using a backup of your target system.

1. Obtain the following information about your SBM system:

• The number of environments you have

• The number of Orchestration Engine servers you have

• The environment that points to each Orchestration Engine server

• The database that is used for each Orchestration Engine server

• An SBM user name and password that can access the environments you need to
renew

• A database user name and password that can be used to log into the
Orchestration Engine database you need to renew, with privileges to list and
deploy process apps.

2. Determine which Orchestration Engine server you are going to renew.

3. Determine which environments use the Orchestration Engine server you are going to
renew. (There is typically only one, but it is a good idea to check.)

4. Make sure the endpoints in the environment that uses the Orchestration Engine
server are correct. Changes are only picked up on deployment, and renew will use
the latest.

5. If extended characters were used in the names of environments, process apps,
orchestrations, or orchestration workflows, follow the procedures in Extended
Character Handling [page 207].

6. Run renew -listenvs to list the environments in your system and make sure you
are working with the correct environment. This command can warn you about
certain problematic server configurations.

7. Run renew -report to view information specific to that environment, such as the
process apps, target servers, endpoints, and orchestrations in the environment. This
command can warn you about certain problematic server configurations.

Important: Check whether you have a problematic server configuration
where SBM Application Engine or Orchestration Engine servers are shared
across environments. Do not continue unless you are sure that this does
not apply to your system or unless you understand the consequences. (For
details, see Problematic Server Configurations [page 207].)

8. Run renew -redeploy for each of the environments associated with the
Orchestration Engine server you are renewing.

9. Allow access to the SBM system.

Part 1: Basic Orchestration Topics

206 Solutions Business Manager (SBM)

Extended Character Handling
SBM uses the UTF-8 character set; for correct operation it is always necessary to specify
this character set when running renew. It is also necessary that the correct display
language is used so you can specify renew parameters with the appropriate language
symbols.

To ensure that UTF-8 is specified as the default file encoding:

1. Create a Windows batch file using UTF-8 encoding.

2. Call renew from this batch file.

3. Redirect the renew output to a file.

4. View the output file with a UTF-8 enabled program that can display the appropriate
characters.

Example:

java -Dfile.encoding=UTF-8 -jar renew.jar -report -environment "Default Environment"
-username "user" -password "pwd" > report.out.txt

To set the correct language:

1. Open the Windows Control Panel.

2. Select Region and Language (this label could vary depending on your Windows
version.)

3. Navigate to the language settings and select the language you are using with SBM.

4. Reboot your machine if necessary.

Registry Access Restriction Handling
When a Windows user does not have access to the registry on the machine where the
renew utility is run, the -sbmdir option must be used with each command.

For example:

java -Dfile.encoding=UTF-8 -jar renew.jar –report -environment "Default Environment"
-username "user" -password "pwd" –sbmDir "C:/Program Files/Serena/" > report.out.txt

Problematic Server Configurations
SBM Application Repository allows you to create certain server configurations that are not
recommended and that could make it difficult to use all of the renew features. In
particular, you can create overlapping environments and multiple Orchestration Engine
target servers. The following sections discuss these configurations.

Overlapping Environments
In a correctly configured SBM system that has multiple environments, each environment
will have its own distinct Application Engine server, and Event Manager server, and an
Orchestration Engine server. The Orchestration Engine and Event Manager servers are

SBM Orchestration Guide 207

known to Application Repository as "target servers." The Orchestration Engine installation
and database is represented by BPEL Server on the Target Servers tab. The Event
Manager server is represented by System Event Manager.

Application Engine and the target servers should be unique to a specific environment so
environments do not overlap. However, you can create overlapping environments,
because Application Repository lets you reuse the same server in a different environment.
This is not the intent of environments, and in most cases it is undesirable and unintended.
It means the server is not fully owned by a particular environment and cannot be
managed in isolation. You could have created such environments accidentally by using the
Clone operation, or could have created them for testing purposes. It is strongly
recommended that you clean up such environments before you run renew.

Renew can be used with overlapping environments in a limited capacity, but it is
necessary to understand your configuration thoroughly and understand the following
limitations of renew:

• Renew clears the Orchestration Engine database. All environments that point to this
database will require orchestrations to be redeployed.

• Renew attempts to redeploy all of the orchestrations from the Application Engine
defined in the environment. If the Application Engine is shared, renew may deploy
more orchestrations than you expect.

• Renew uses the specified environment to bind the endpoints. If the orchestration was
not originally deployed through that environment, the endpoint might not be defined
or might have the wrong value.

Using renew to redeploy when there are overlapping environments is problematic and is
not recommended. You can use renew to clear the Orchestration Engine database but to
ensure correct results, you should use Application Repository to manually redeploy each of
the process apps from the overlapping environments from which they were originally
deployed.

By default, renew tries to detect overlapping environments and will ask for confirmation
before redeploying. (If you use the -nowarning option with renew -redeploy, no
confirmation warning is presented.) The -listenvs command also detects overlapping
environments.

Note: Overlapping can only be detected if the same server name is used across
the environments. If different names are used (for example, "localhost," an IP
address, and a DNS name), overlapping is not detected, even if these names
point to the same physical server. Make sure you thoroughly understand your
system configuration.

Renew Commands
The following renew commands are available:

• -h or -help [page 209]

• -listenvs [page 210]

• -report [page 211]

• -cleanupScheduledReports [page 212]

Part 1: Basic Orchestration Topics

208 Solutions Business Manager (SBM)

• -clearCommonLog [page 213]

• -clearEventLog [page 214]

• -redeploy [page 215]

• -restartSSFIndexUpdate [page 218]

The success or failure of these commands can be tested in a Windows batch file using "not
errorlevel 1," which returns true if the error level was 0. An error level of 0 means the
command executed successfully; an error level of 1 or greater means the command failed.
For example:

java -Dfile.encoding=UTF-8 -jar renew.jar -listenvs -username "admin" -
password "password" -arAddress "http://localhost:8085"
if not errorlevel 1 goto END
echo An error occurred running renew
:END

The following sections describe the commands and provide example output.

-h or -help
Displays the command line arguments. This information is also displayed if no command
or an invalid command is specified.

Renew [-clearCommonLog [-nowarning] [-dbUrl <arg>]
[-dbUsername <arg>] [-dbPassword <arg>]]
Renew [-clearEventLog [-nowarning] [-dbUrl <arg>]

[-dbUsername <arg>] [-dbPassword <arg>]]
Renew [-orchStat -action <arg> [-startDate <arg>] [-endDate <arg>]

[-dbUrl <arg>] [-dbUsername <arg>] [-dbPassword <arg>]]
Renew [-redeploy [-environment <arg>] [-nowarning] -username <arg>

-password <arg>
[-arAddress <arg>] [-log [<file>]] [-sbmDir <arg>]
[-redeployInFile <file>] [-failOutputFile <file>]]

Renew [-listenvs [-endpoints] -username <arg> -password <arg>
[-arAddress <arg>] [-log [<file>]] [-sbmDir <arg>]]

Renew [-report -environment <arg> [-targetservers] [-endpoints] [-processapps]

[-arAddress <arg>] [-orchestrations] [-log [<file>]] [-sbmDir <a
rg>]]
usage:
-action <arg> Action for -orchStat command(migrate or

purge).
-arAddress <arg> Application Repository Address. It can be

omitted and in this case it is built using
data from renew.properties. Example:
"http[s]://server:port"

-cleanupScheduledReports Delete orphaned data from TS_NOTIFICATIONS,
TS_NOTIFICATIONEVENTS, and TS_NOTIFICATIONSUBSCRIPTIONS tables.

-clearCommonLog Truncate all data from CL_LOG and
CL_CONTEXT_VALUE tables

-clearEventLog Truncate all data from EL_EVENT,
EL_EVENT_PROCSNG_DATA,

SBM Orchestration Guide 209

EL_EVENT_SRVC_FLW_PROCSNG_DATA,
EL_EVENT_SERVICE_FLOW and EL_EVENT_LOG_MESSAGE
tables

-dbPassword <arg> Database user password.
-dbUsername <arg> Database user name.
-endDate <arg> End date for orchStat action in format

MM/dd/yyyy(e.g. 01/21/2016)
-endpoints List of endpoints of particular environment.
-environment <arg> Environment name. If omitted all environments

are processed.
-exportOnly <arg> Path to export applications for manual

processing (export only "redeploy" mode)
-failOutputFile <arg> Output file for failed applications (users,

environments) list.
-h help
-help help
-listenvs List of all environments.
-log <file> Enable logging to the console or to the file

named <file>.
-nowarning Don't warn.
-orchestrations List of orchestrations of particular

environment.
-orchestrationsOnly Used with redeploy command to exclude event map

deployment.
-orchStat Migrate data from eventlog tables or purge

orch statistic logs(depends on action)
-password <arg> SBM user password.
-processapps List of processes applications of particular

environment.
-redeploy Redeploy all orchestrations.
-redeployInFile <arg> Input file which contains list of apps(users,

environments) which need to be redeployed.
-report Get information about environments.
-restartSSFIndexUpdate Restart Work Center Search Engine index update

process
-sbmDir <arg> SBM location. It is required when registry

access is restricted. Example "C:/Program
Files/Serena/"

-startDate <arg> Start date for orchStat action in format
MM/dd/yyyy(e.g. 01/21/2016)

-targetservers List target servers of particular environment.
-username <arg> SBM user name.

-listenvs
Lists all environments in Application Repository.

Example output with no overlapping environments (see Overlapping Environments [page
207] for details):

java -Dfile.encoding=UTF-8 -jar renew.jar -listenvs -username "admin" -
password "password"
-arAddress "http://localhost:8085"

Part 1: Basic Orchestration Topics

210 Solutions Business Manager (SBM)

Environments :
Default Environment

Done.

Example output with overlapping environments:

java -Dfile.encoding=UTF-8 -
jar renew.jar -listenvs -username "admin" -password "password" -arAddress
"http://localhost:8085"

Environments :
Default environment,
clone1,
clone 2

WARNING: Target servers shared across environments.
Using renew with this configuration requires special care !!!
DO NOT PROCEED WITHOUT READING THE DOCUMENTATION.

DS, [JBPM_BPEL->http://localhost:8085] used by : [Default Environment][clone1][clone 2]
DS, [ALF->http://localhost:8085] used by : [Default Environment][clone1][clone 2]
AE, [AE->http://localhost:80/gsoap/gsoap_ssl.dll?sbminternalservices72] used by : [Default
Environment][clone1][clone 2]
Done.

-report
Gets information about a particular environment. If you specify no options, only
orchestrations are displayed.

Example output with no options:

java -Dfile.encoding=UTF-8 -jar renew.jar -report -environment "Default Environment"
-username "admin" -password "password" -arAddress "http://localhost:8085"

Orchestrations:
Issue Defect Management, IDMOrchestrations, AddSCMAssociations
OrchestrationTest, SynchOrch, Synch
OrchestrationTest, SynchOrch, Asynch
OrchestrationTest, SynchOrch, SynchTimeout
OrchestrationTest, SynchOrch, SynchFault
OrchestrationTest, SynchOrch, AsynchFault
OrchestrationTest, SynchOrch, SynchError
OrchestrationTest, TestOrch, NewTestOrchWorkflow
OrchestrationTest, TestOrch, NewTestOrch2Workflow
Incident Management, IncidentOrchestration, CloseChildIncidents
Incident Management, IncidentOrchestration, ReOpenChildIncidents
Incident Management, IncidentOrchestration, IssueDevelopmentComplete
OeOnly, OeOnlyOrch, OrchestrationWorkflow
AAS_TEST_1, AAS_One, AAS_OneWorkflow
AAS_TEST_1, AAS_SYNC_1, AAS_SYNC_1Workflow2
Change Approval Requests, CAR, IssueDevelopmentComplete
Change Approval Requests, CAR, InCABReviewAddReviewerWorkflow

Done.

SBM Orchestration Guide 211

Example output with selected options:

java -Dfile.encoding=UTF-8 -jar renew.jar -report "Default Environment"
-targetservers -endpoints -processapps -username "admin" -password "password"
-arAddress "http://localhost:8085"

Target Servers :
AE, [Default Application Engine] : http://TEST/gsoap/gsoap_ssl.dll?sbminternalservices72
DS, [Default Event Manager Server] : http://TEST:8085
DS, [Default BPEL Server] : http:// TEST:8085
DS, [test] : http://localhost:8085

Endpoints :
RestWrapperService, http:// TEST:8098/restwrapper
sbmappservices72, http://TEST:80/gsoap/gsoap_ssl.dll?sbmappservices72
sbmadminservices72, http://TEST:80/gsoap/gsoap_ssl.dllsbmadminservices72

Process Applications :
Global Process App (eval)
Issue Defect Management
Incident Managment
Change Approval Requests
OrchestrationTest
AAS_TEST_1
AEOnly
OeOnly

Done.

-cleanupScheduledReports
Deletes orphaned scheduled report records in TS_NOTIFICATIONEVENTS,
TS_NOTIFICATIONS, and TS_NOTIFICATIONSUBSCRIPTIONS. For example, if an entry for
a scheduled report is deleted from TS_NOTIFICATIONS, but a related record exists in
TS_NOTIFICATIONEVENTS, you can use this command to clean up both tables.

The command performs the following actions:

• Deletes scheduled reports records (with TS_SENDTYPE=256) from the
TS_NOTIFICATIONS table that reference a report that no longer exists. In other
words, delete records in which TS_NOTIFICATIONS.TS_REPORTID references a
TS_REPORTS.TS_ID that does not exist.

• Deletes scheduled reports records (with TS_SENDTYPE=256) from the
TS_NOTIFICATIONS table that do not have a related record in the
TS_NOTIFICATIONEVENTS table (TS_NOTIFICATIONID column).

• Deletes scheduled reports records (with TS_SENDTYPE=256) from the
TS_NOTIFICATIONEVENTS table in which
TS_NOTIFICATIONEVENTS.TS_NOTIFICATIONID references a
TS_NOTIFICATIONS.TS_ID that does not exist.

• Deletes scheduled reports records from the TS_NOTIFICATIONSUBSCRIPTIONS table
in which TS_NOTIFICATIONSUBSCRIPTIONS.TS_NOTIFICATIONID references a
TS_NOTIFICATIONS.TS_ID that does not exist.

There are two ways to execute this command using the provided batch template files:

Part 1: Basic Orchestration Topics

212 Solutions Business Manager (SBM)

• Run cleanupSR.bat:

installDir\SBM\Common\Misc\renew\renew_templates\cleanupSR.bat

This command deletes orphaned records related to scheduled reports from
TS_NOTIFICATIONEVENTS and TS_NOTIFICATIONS.

In this case, the -dbUsername and -dbPassword options are omitted. In their place,
the credentials are taken from the renew.properties file located here:

installDir\SBM\Common\tomcat\server\default\conf

• Run cleanupSR_dbCredentials.bat:

installDir\SBM\Common\Misc\renew\renew_templates\cleanupSR_dbCredentials.bat

This command deletes orphaned records related to scheduled reports from the
TS_NOTIFICATIONEVENTS, TS_NOTIFICATIONS, and
TS_NOTIFICATIONSUBSCRIPTIONS tables using the database credentials that are
specified in the batch file.

Example output:

java -Dfile.encoding=UTF-8 -jar renew.jar -cleanupScheduledReports
-dbUsername "sa" -dbPassword "password"

WARNING: This will delete some data from TS_NOTIFICATIONS and TS_NOTIFICATIONEVENTS tables.
Are you sure? [Y/N]:Y
Done.

-clearCommonLog
Deletes all records in the CL_CONTEXT_VALUE and CL_LOG common log tables. If you
enabled debug level logging for a process app and forgot to disable it, the common log
could grow significantly and you may not be able to execute any common log operations
in Application Repository or SBM Composer. You can use this command to clear the
common log tables in this scenario.

Important: Before you run the renew -clearCommonLog command, it is highly
recommended that you stop the SBM Tomcat service first.

There are two ways to execute this command using the provided batch template files:

• Run clearCL.bat:

installDir\SBM\Common\Misc\renew\renew_templates\clearCL.bat

This option clears the common log tables using the database credentials that are
specified in:

installDir\SBM\Common\tomcat\server\default\conf\renew.properties

• Run clearCL_dbCredentials.bat:

SBM Orchestration Guide 213

installDir\SBM\Common\Misc\renew\renew_templates\clearCL_dbCredentials.bat

This option clears the common log tables using the database credentials that are
specified in the batch file.

Example output:

java -Dfile.encoding=UTF-8 -jar renew.jar -clearCommonLog
-dbUsername "sa" -dbPassword "password"

WARNING: This will permanently delete all Common Logger data. Are you sure? [Y/N]:Y
Done.

-clearEventLog
Deletes all records in the EL_EVENT, EL_EVENT_PROCSNG_DATA,
EL_EVENT_SRVC_FLW_PROCSNG_DATA, EL_EVENT_SERVICE_FLOW and
EL_EVENT_LOG_MESSAGE event log tables. If you have not purged the event log in some
time and a large amount of records have accumulated, you might not be able to delete
event log records using Application Repository. You can use this command to clear the
event log tables in that scenario.

Important: Before you run the renew -clearEventLog command, it is highly
recommended that you stop the SBM Tomcat service first.

There are two ways to execute this command using the provided batch template files:

• Run clearEL.bat:

installDir\SBM\Common\Misc\renew\renew_templates\clearEL.bat

This option clears the event log tables using the database credentials that are
specified in:

installDir\SBM\Common\tomcat\server\default\conf\renew.properties

• Run clearEL_dbCredentials.bat:

installDir\SBM\Common\Misc\renew\renew_templates\clearEL_dbCredentials.bat

This option clears the event log tables using the database credentials that are
specified in the batch file.

Example output:

java -Dfile.encoding=UTF-8 -jar renew.jar -clearEventLog
-dbUsername "sa" -dbPassword "password"

WARNING: This will permanently delete all Common Event Log data. Are you sure? [Y/N]:Y
Done.

Part 1: Basic Orchestration Topics

214 Solutions Business Manager (SBM)

-redeploy
Redeploys the orchestrations and eventmap from the process apps that are deployed to a
particular environment. It does this by retrieving the environment's deployed process
apps from the environment's Application Engine server, and then retrieving the target
server and endpoint configuration from the environment. For each process app, it
redeploys the orchestration workflows and eventmap to the target Orchestration Engine,
fixing the various endpoints consumed by those workflows.

You can run this command multiple times against an environment, even if you did not run
renew -clear earlier. It will simply redeploy the orchestration definitions deployed to the
environment and cached by the Application Engine to the Orchestration Engine, creating a
new internal version within the Orchestration Engine. Running renew -redeploy does not
affect the deployment records that Application Repository keeps.

Note:

• Because renew retrieves the endpoints from Application Engine, it is
possible that they were modified in Application Repository since the last
deployment. After running renew, the deployed orchestrations will have the
endpoints that were last deployed to Application Engine, unless you include
the -useEnvEndpoints option as well.

• See Overlapping Environments [page 207] for important information about
redeploying in configurations with overlapping environments.

Example output with overlapping environments, without the -nowarning option:

java -Dfile.encoding=UTF-8 -jar renew.jar -redeploy -environment "Default Environment"
-username "admin" -password "password" -arAddress "http://localhost:8085"

WARNING: Target servers shared across environments.
Using renew with this configuration requires special care !!!
DO NOT PROCEED WITHOUT READING THE DOCUMENTATION.

DS, [JBPM_BPEL->http://localhost:8085] used by : [Default Environment][clone1][clone 2]
DS, [ALF->http://localhost:8085] used by : [Default Environment][clone1][clone 2]
AE, [AE->http://localhost:80/gsoap/gsoap_ssl.dll?sbminternalservices72] used by :
[Default Environment][clone1][clone 2]

WARNING: Are you sure? [Y/N]:y
Redeploying orchestrations ...

AAS_TEST_1 :
AAS_One : Deployed
AAS_SYNC_1 : Deployed

AAS_TEST_1 : Deployed

Change Approval Requests :
CAR : Deployed

Change Approval Requests : Deployed

Incident Management :
IncidentOrchestration : Deployed

Incident Management : Deployed

SBM Orchestration Guide 215

Issue Defect Management :
IDMOrchestrations : Deployed

Issue Defect Management : Deployed

OeOnly:
OeOnlyOrch : Deloyed

OeOnly : Deployed

OrchestrationTest :
SynchOrch : Deployed
TestOrch : Deployed

OrchestrationTest : Deployed
Done.

Example output with the -nowarning option:

java -Dfile.encoding=UTF-8 -jar rewnew.jar -redeploy -environment "Default Environment"
-nowarning -username "admin" -password "password" -
arAddress "http://localhost:8085"
Redeploying orchestrations ...

AAS_TEST_1 :
AAS_One : Deployed
AAS_SYNC_1 : Deployed

AAS_TEST_1 : Deployed
Change Approval Requests :

CAR : Deployed
Change Approval Requests: Deployed

Incident Management :
IncidentOrchestration : Deployed

Incident Management : Deployed

Issue Defect Management :
IDMOrchestrations : Deployed

Issue Defect Management: Deployed

OrchestrationTest :
SynchOrch : Deployed
TestOrch : Deployed

OrchestrationTest : Deployed
Done.

You can also run the redeploy command with the following options:

• -redeployInFile

• -failOutputFile

• -eventmap

• -useEnvEndpoints

The -redeployInFile option has an argument which is an input file that contains a list of
apps, users, and environments that need to be redeployed.

Part 1: Basic Orchestration Topics

216 Solutions Business Manager (SBM)

File example (redeploy.xml):

<RedeployList>
<User name="admin">

<Environment name="Dev Environment" />
<Environment name="QA Environment">

<ProcessApp>QuickTest</ProcessApp>
</Environment>

</User>
</RedeployList>

Example:

java -Dfile.encoding=UTF-8 -jar renew.jar -redeploy -username "admin"
-password "password" -redeployInFile "redeploy.xml"

In this example, the redeploy is performed for all apps in the Dev Environment and the
QuickTest app in the QA Environment.

The -failOutputFile option has an argument that outputs a file for failed apps, users,
and environments. This output file has the same structure as -redeployInFile.

Example:

java -Dfile.encoding=UTF-8 -jar renew.jar -redeploy -username "admin"
-password "password" –failOutputFile "failOutput.xml"

You can include the -eventmap option to redeploy event maps for deployed applications.

Example:

java -Dfile.encoding=UTF-8 -jar renew.jar -redeploy -username "admin"
-password "password" -eventmap

This is usually not required, but it can be useful in the event that data becomes obsolete.
For example, if the host name is changed for either server, the event map must be
redeployed.

You can use the -orchestrationsOnly option to redeploy only orchestrations. However, it
is not recommended to use it unless you want to skip eventmap deployment and you need
only orchestrations to be redeployed.

You can use the -useEnvEndpoints option in the event that endpoints were manually
changed in Application Repository after the last deploy.

Example:

java -Dfile.encoding=UTF-8 -jar renew.jar -redeploy -username "admin"
-password "password" -useEnvEndpoints

This is not required, but it can be useful in the event the endpoints have changed. For
example, if the endpoints were changed in Application Repository, this option ensures that
after the redeploy, any endpoints for Application Engine Web service calls that are made
from an orchestration are current.

SBM Orchestration Guide 217

-restartSSFIndexUpdate
Restarts the Work Center search index update process. This enables you to restart the
indexer update process without having to wait and stop and start SBM Tomcat. This is
useful if a problem occurs during the index update process and new items or updated
items are not being indexed. Note that this command only applies to run-time indexing,
not the initial indexing process.

You can execute this command using the provided batch template file:

• Run restartSSFUpdateProcess.bat:

installDir\SBM\Common\Misc\renew\renew_templates\restartSSFUpdateProcess.bat

Before you execute the batch file, edit the file and enter the user name and
password for an SBM user with remote administration privilege.

Example output:

java -Dfile.encoding=UTF-8 -jar renew.jar -restartSSFIndexUpdate
-username "admin" -password ""

Progress report: Initializing SSO...
initSSO() completed
{"data":null,"status":{"value":"OK","message":null,"errorCode":null}}
Done.

Part 1: Basic Orchestration Topics

218 Solutions Business Manager (SBM)

Part 2: Advanced Orchestration Topics

This section contains the following information:

• Chapter 9: Raising External Events [page 221]

• Chapter 10: Calling RESTful Web Services from an Orchestration Workflow [page
237]

SBM Orchestration Guide 219

Part 2: Advanced Orchestration Topics

220 Solutions Business Manager (SBM)

Chapter 9: Raising External Events

Important: These instructions are intended for experienced software
developers/integrators who are familiar with the SOAP standard and Extensible
Markup Language (XML) and who have expert knowledge of the Web Service
Description Language (WSDL) and of creating Web services. A working
knowledge of SBM is also required.

External events can be used to link a wide range of products to orchestration workflows.
This allows you to enable Web service applications to work with Solutions Business
Manager.

To raise and handle external events requires the creation of a custom event definition and
mapping it to your orchestration workflow.

Note: Information about is SBM Web services is provided in the SBM Web
Services Developer's Guide, which is included with the product.

The following topics describe how to create, import, and map the event definition to
generate your external events:

• Events Terminology and Concepts [page 221]

• Accessing the Advanced Orchestration Package [page 223]

• Defining an Event Definition [page 223]

• Creating a Custom Event Definition [page 224]

• Testing Events from an External Source [page 226]

• Creating Event Client using Apache Axis2 [page 227]

• Raising an External Event through E-mail [page 228]

• Configuring Solutions Business Manager to Receive E-Mail Events [page 231]

• Upgrading Existing Event Definitions [page 235]

Events Terminology and Concepts
This topic terminology and concepts pertaining to events.

Event

Note: An event was referred to as a mashup event or an ALF event in previous
releases of SBM.

An event is a Web services message signaling a meaningful change from an application or
external product. For example, an issue defect management application in SBM might
generate an event every time a user enters a new defect, or an external product might
raise an external event named BuildCompleted. When an event is received by the Event

SBM Orchestration Guide 221

Manager, the SBM Orchestration Engine is called to execute the orchestration workflow
linked to the event.

Events are SOAP messages. SBM supports both HTTP and e-mail transports for event
SOAP messages. The Event Manager provides RPC/literal messaging and document/literal
messaging services to accept event requests. It does not support RPC/encoded
messaging.

Important: While events can be raised using either RPC/literal or document/
literal messaging format, they are defined using RPC/literal messaging format
(see Defining an Event Definition [page 223].)

Extensions that come with particular event types must be defined so an orchestration
workflow can access the extension data in the event. However, the same event can also
be handled by an orchestration workflow that only understands the base event.

To accomplish this, schema restriction-based derived types are defined that allow for
tightening of the value range or other restrictions on certain elements in a complex type.
In this way, a type that is an ALFEventType can be declared that only allows, for example,
an EventType of ThingCreated and an ObjectType of either Thing1 or Thing2.

For large events (for example, events with a large amount of BASE64 data) SBM can
accept compressed events that are sent in Gzip format.

Event Manager

The Event Manager is a component in Solutions Business Manager that responds to events
sent by applications and products. The Event Manager calls orchestration workflows
implemented as BPEL processes.

Event Map

The Event Manager dispatches events according to a configured map, called the event
map. The event map relates events to the orchestration workflows that should run when
an event occurs. Products that can raise events can declare their events by means of a
specific WSDL format called an event definition. (See Defining an Event Definition [page
223].) The event definition can be used by a product, such as Solutions Business
Manager, to construct an event map and to deploy the event map to the Event Manager.
At runtime, the Event Manager receives the event, and if the event appears in a deployed
event map, it invokes the associated orchestration workflow or workflows, passing on the
event data.

Orchestration Workflow

An orchestration workflow is a sequenced arrangement of Web service calls designed
using SBM Composer. Orchestration workflows combine Web services using loops and
decision branches and define the way data is mapped between the Web services. The final
arrangement is saved as a BPEL process. Orchestration workflows can be linked to
application workflows in a process app through actions on both transitions and states.
Orchestration workflows can run asynchronously using an event, or they can be called
synchronously, where the action waits for the orchestration workflow to return some data.
When designed to be used with an event, orchestration workflows can also be invoked by
external systems.

SBM Orchestration Engine

The SBM Orchestration Engine is the component in Solutions Business Manager that
executes orchestration workflows. Using SBM Composer, Web services can be sequenced
and then executed in response to an event or by transitions in applications.

Part 2: Advanced Orchestration Topics

222 Solutions Business Manager (SBM)

Object

In Solutions Business Manager, an object is identified in the event structure by the values
of ObjectType and ObjectId. In other words, the ObjectType and ObjectId are used to
refer to the object that originated the event. An event typically originates due to a change
in an object. The ObjectType/ObjectId identifies the source of the event within the
product and the EventType/EventId identifies the type of change that caused the event.

Accessing the Advanced Orchestration Package
The Advanced Orchestration Package contains files that you can use as a basis to create
or update your event definition.

Before you create your application-specific event definition, download the Advanced
Orchestration Package .zip file. You will be using these files throughout the instructions
to create your custom event definitions and events.

The file is available from the Start Page in SBM Composer.

Refer to the readme.txt file in the Advanced Orchestration Package .zip file for a
description of the files in the package.

Defining an Event Definition
An event definition used in SBM defines events from an application workflow. You can
create your own custom event definition for generating external events.

An event definition is a WSDL file that redeclares the ALFServiceFlow service, making it
specific to your event source. The process involves creating a specialized event definition
schema derived from the ALF event base schema. The event definition specifies custom,
tool-specific types and events. It also defines the orchestration workflow (declared as a
service flow service) that handles these events.

You can create a custom event directly in SBM Composer. This works for many cases.
However, for some advanced cases, you might prefer to create the event definition as a
separate WSDL file and import it into SBM Composer.

Note: This chapter describes how to create the event definition as a separate
WSDL file. For information about how to create the event definition in SBM
Composer see Raising Events from External Products [page 145], Creating a
New Custom Event Definition [page 69], and Importing an Event Definition File
for a New Custom Event Definition [page 69].

Event Definition Messaging and Schema

Event definitions must use RPC/literal messaging and must be created following the
definitions in ALFEventManager?wsdl.

The ALF event base schema from which you create the derived schema for your event
definition is defined in ALFEventBase_1.xsd. This schema is common to all event services
and is included by reference in your event definition.

SBM Orchestration Guide 223

Creating a Custom Event Definition
This section provides instructions for creating a custom event definition. Using the
ExampleEventDefinition.wsdl file as a template, you provide values that let external
products generate events.

Important: This topic provides instructions for manually creating a custom
event definition. It is more convenient to create a custom event definition in
SBM Composer. For more information, see Creating a New Custom Event
Definition [page 69].

To create a custom event definition:

1. Create an empty folder on your local system.

2. Copy the advanced_orchestration_package.zip file and paste it in the folder.

3. Extract the advanced_orchestration_package.zip file.

• The ALFEventManager.wsdl file is the ALF Event Manager WSDL. Note that the
ExampleEventDefinition.wsdl imports the ALFEventManager.wsdl.

• The ALFEventBase_1.xsd file is the ALF event base schema.

• ExampleEventDefinition.wsdl is the template for your custom event definition.
The other files are explained in other topics.

Note: You can also obtain a copy of the ALF Event Manager WSDL and
the ALFEventBase_1.xsd files from the installDir\Composer\Conf
folder.

4. Create a copy of the ExampleEventDefinition.wsdl file in an XML editor and
rename it as your external product WSDL file, for example, SCMProduct.wsdl. If you
ever move this file to a different folder, be sure to place a copy of the
ALFEventManager.wsdl and the ALFEventBase_1.xsd files in the folder as well.

5. Edit this new file to modify it for your installation:

a. Look for following section for event type declaration. Change the value attribute
of the enumeration to your event type. Each enumeration value corresponds to
different event occurring in your application.

<xs:simpleType name="MyEventDefinitionEventType">
<xs:restriction base="EventTypeType">
<xs:enumeration value="MyEventDefinitionEvent"/>
</xs:restriction>
</xs:simpleType>

You can define as many enumeration values as you want, for example:

<xs:simpleType name="MyEventDefinitionEventType">
<xs:restriction base="EventTypeType">
<xs:enumeration value="Issue Created"/>
<xs:enumeration value="Issue Deleted"/>
<xs:enumeration value="Waiting for Approval"/>

Part 2: Advanced Orchestration Topics

224 Solutions Business Manager (SBM)

</xs:restriction>
</xs:simpleType>

b. Look for the following section for object type declaration. You can define as many
enumeration values as you want. However, it is recommended that you define
only one object type. Change the enumeration value to your external product
specific object.

<xs:simpleType name="MyEventDefinitionObjectType">
<xs:restriction base="ObjectTypeType">
<xs:enumeration value="MyEventDefinitionObject"/>
</xs:restriction>
</xs:simpleType>

c. Look for product value, product instance and product version declarations.
Product value indicates the external product name. Product version is the
number you want to give this event declaration. You can use this value to
distinguish the events between versions of a product if the event definitions are
changed in an incompatible way. If the events are completely compatible,
however, you should in general not change this value. Product instance is the
"logical location," and is determined by the particular installation of the external
product in your system. It can default to what is specified in the event definition,
but you can also use SBM Composer to indicate the external product from which
you are expecting the event.

<xs:simpleType name="MyEventDefinitionProductType">
<xs:restriction base="ProductType">

<xs:enumeration value="MyEventDefinition"/>
</xs:restriction>

</xs:simpleType>

<!-- Derived ProductVersionType -->
<xs:simpleType name="MyEventDefinitionProductVersionType">

<xs:restriction base="ProductVersionType">
<xs:enumeration value="1.0"/>

</xs:restriction>
</xs:simpleType>

<!-- Derived ProductInstanceType -->
<xs:simpleType name="MyEventDefinitionProductInstanceType">

<xs:restriction base="ProductInstanceType">
<xs:enumeration value="MyEventDefinitionInstance"/>

</xs:restriction>
</xs:simpleType>

Again in all three cases, replace the enumeration values to match the values for
the external product.

Note: The event type, object type, product, product instance, and
product version values make a set of events match, and are used to
determine which orchestration workflows need to be invoked.

SBM Orchestration Guide 225

d. Look for the section where extension data is defined. Here you can define
different fields you want to send as input to your orchestration workflows.
Remember you can send only one set of data using one process app tool.

<xs:complexType name="MyEventDefinitionCustomExtension">
<xs:annotation>

<xs:documentation>
Custom Extension

</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="MyEventDefinitionData" type="xs:string"/>
</xs:sequence>
<xs:anyAttribute/>

</xs:complexType>

You can define any type of schema under sequence either simple type elements
as shown above or complex type.

e. Replace all remaining occurrences of "MyEventDefinition" with your product
value.

6. At this point, your event definition WSDL is ready to be imported it into SBM
Composer.

Testing Events from an External Source
After deploying your process app, you can test the external event by using sample event
xml provided in ExampleEventDefinitionSOAPMessage.xml using tools like SoapUI. This
procedure is optional.

If you do not want to perform this test, go directly to Creating Event Client using Apache
Axis2 [page 227].

To test the event from an external source, perform the following steps:

1. Create new project in soapUI.

2. Import your event definition WSDL. For information on creating a custom event
definition, see Creating a Custom Event Definition [page 224].

3. SoapUI will generate various request XMLs for you. Choose the one that matches
your application's ALFServiceFlowSOAP request. This will be displayed as <your
product value>ALFServiceFlowSOAP.

4. Open the corresponding request in the SoapUI editor and copy paste the <Base>
element from ExampleEventDefinitionSOAPMessage.xml in it.

5. Replace the event match values—namely EventType, ObjectType, Product,
ProductInstance, and ProductVersion—to match your application-specific values.

6. Fill in your extension data.

7. Make sure that you set the correct endpoint pointing to the Event Manager. The URL
should like this:

Part 2: Advanced Orchestration Topics

226 Solutions Business Manager (SBM)

http://<server>:<port>/eventmanager/services/ALFEventManager

8. Raise the event by running this request. You can read about the execution in the
common logger view in SBM Composer.

Creating Event Client using Apache Axis2
This topic gives an example of using Apache Axis2 to create your services. Apache Axis2 is
an enterprise-ready Web service engine that is very user-friendly and provides Web
service interactions with a dynamic and flexible execution framework. For more
information, refer to http://ws.apache.org/axis2/.

To create a client for raising events using Doc/Lit binding:

1. Create a new application-specific WSDL file.

a. Make a copy of the ExampleEventDefinitionALFEventManagerDocLit.wsdl file.
This will become your application-specific .wsdl file.

b. Copy both <xsd:schema> elements from your application-specific event definition
.wsdl file and paste the schema into this new .wsdl file where the following
comment is:

<!-- Paste schema from your event definition wsdl here -->

In other words, open the custom event definition file that you created in Creating
a Custom Event Definition [page 224] and copy the schema elements into this
file. When finished, the .wsdl file created from
ExampleEventDefinitionALFEventManagerDocLit.wsdl will contain three
schema elements.

c. Replace all occurrences of MyEventDefinition with your product value.

Your application-specific .wsdl file is ready for consumption by your application.

2. If you are using Axis2 to raise external events, modify the batch file
GenerateStubClassesFromAxis2.bat and change the name of the .wsdl file.
Remember to set the Axis2 home.

3. Once the classes are generated, you can use the stub class to raise events.

4. The URL for this endpoint should in the form http://<server>:<port>/
eventmanager/services/ALFEventManagerDocLit.

SBM Orchestration Guide 227

Raising an External Event through E-mail
This section contains general instructions for raising external events through e-mail using
the ExampleEventDefinitionSOAPMessage_forEmail.xml template, which is included in
the Advanced Orchestration Package. For details on creating a sample e-mail event
message, see Creating a Sample E-mail Event SOAP Message [page 229].

To raise an external event through e-mail, perform the following steps:

1. Open the ExampleEventDefinitionSOAPMessage_forEmail.xml file in an XML
editor. The template file is included in the Advanced Orchestration Package. (The
contents of the template are shown in the next section.)

2. Provide values for the following Body elements. The values in italics are based on the
definitions in your event definition:

• EventId

• Timestamp

• EventType

• ObjectType

• ObjectId

• Product

• ProductVersion

• ProductInstance

3. Define the data elements that you will send with the event in the Extension
element.

4. Provide your authentication credentials in one of the following ways:

• Use the ns:ALFSecurity element.

This method is shown in the template.

• Use a WS-Security header.

5. Specify the recipient's e-mail address in the wsa:To element.

Part 2: Advanced Orchestration Topics

228 Solutions Business Manager (SBM)

6. To send the event XML in the body of the e-mail, copy and paste the contents of the
XML file into the body of the e-mail, and then send it to the address in the wsa:To
element.

Important: SBM can retrieve the ALF event from either a plain text body
(single part e-mail message) or the last plain text part of a multi-part
message. SBM does not process single part messages that contain only
HTML text or multi-part messages that do not contain plain text with the
ALF event.

Some POP3 mail servers are able to convert single part HTML messages
into multi-part messages that also contain plain text equivalent HTML. If
you are using this type of POP3 mail server, you can send HTML-only
messages as well. For details, see solution S141688. If plain text cannot
be used, then send the event XML as an e-mail attachment (see the next
step).

Important: Be sure that your e-mail client does not insert extra
characters, such as line endings, when you send the e-mail.

7. To send the event XML as an e-mail attachment, attach the XML file to the e-mail,
and then send it to the address in the wsa:To element. The text file attachment will
be processed instead of the message body and treated as UTF-8 by default.

Creating a Sample E-mail Event SOAP Message
This section contains instructions for creating a sample e-mail event SOAP message using
the ExampleEventDefinitionSOAPMessage_forEmail.xml template.

The contents of the template are included here for your reference.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:ns="http://www.eclipse.org/alf/schema/EventBase/1"
xmlns:myev="http://www.example.org/MyEventDefinitionEventExtensions">

<soapenv:Header>
<wsa:To>mailto:eventemail@serverName?X-Service-Path=/eventmanager
→ /services/ALFEventManagerOneWayDocLit</wsa:To>
<wsa:MessageID>urn:uuid:421A2EE66BA3A42A8C1203350641340</wsa:MessageID>
<wsa:Action>urn:EventNotice</wsa:Action>

</soapenv:Header>
<soapenv:Body>

<ns:ALFEventNoticeDoc version="1.0">
<ns:Base>

<ns:EventId>1</ns:EventId>
<ns:Timestamp>2008-05-12T21:19:20.671Z</ns:Timestamp>
<ns:EventType>MyEventDefinitionEvent</ns:EventType>
<ns:ObjectType>MyEventDefinitionObject</ns:ObjectType>
<ns:ObjectId>1</ns:ObjectId>
<ns:Source>

<ns:Product>MyEventDefinition</ns:Product>
<ns:ProductVersion>1.0</ns:ProductVersion>
<ns:ProductInstance>MyEventDefinitionInstance</ns:ProductInstance>

</ns:Source>
<ns:User>

SBM Orchestration Guide 229

http://knowledgebase.serena.com/InfoCenter/index?page=content&id=S141688

<ns:ALFSecurity>
<ns:UsernameToken>

<ns:Username>username</ns:Username>
<ns:Password>password</ns:Password>

</ns:UsernameToken>
</ns:ALFSecurity>

</ns:User>
</ns:Base>

<ns:Extension>
<myev:MyEventDefinitionData>Test Data</myev:MyEventDefinitionData>

</ns:Extension>
<//ns:ALFEventNoticeDoc>

</soapenv:Body>
</soapenv:Envelope>

Note: The element prefixes (for example, wsa:) used in the rest of this section
are simply shortcut references to the defining namespace. They are provided to
help you identify the values in the template, but the prefixes are not part of the
element name.

To create a sample e-mail event SOAP message, you must update all of the
bolded values in the template as follows:

1. Set the following element values for the particular system you are using:

• <wsa:To>mailto:event@yourdomain.com?X-Service-Path=/eventmanager/
services/ALFEventManagerOneWayDocLit</wsa:To>
The WS-Addressing <To> element value must contain a valid xs:anyURI in the
format shown. The e-mail portion of the URI, in this case
eventemail@yourdomain.com, should be set to the e-mail address that you have
been provided for sending events to the system.

Note: In the SBM On-Demand environment, the e-mail address you
should use is usually event@yourdomain.com. In other words, you
should replace eventemail@serverName in the template with
event@yourdomain.com.

• <ns:Username>username</ns:Username>
• <ns:Password>password</ns:Password>

The values of the preceding two elements should be set to the user name and
password credentials for the system that you use for raising the event.

2. Set the following element values per event type, as defined in your event definition
WSDL:

• <ns:EventType>MyEventDefinitionEvent</ns:EventType>
Set this element to the EventType value for this event.

• <ns:ObjectType>MyEventDefinitionObject</ns:ObjectType>
Set this element to the ObjectType value for this event.

• <ns:Product>MyEventDefinition</ns:Product>

Part 2: Advanced Orchestration Topics

230 Solutions Business Manager (SBM)

Set this element to the Product value for your event definition.

• <ns:ProductVersion>1.0</ns:ProductVersion>
Set this element to the ProductVersion value for your event definition.

• <ns:ProductInstance>MyEventDefinitionInstance</ns:ProductInstance>
Set this element to the ProductInstance value for your event definition.

3. Set the following element values for each event instance:

• <wsa:MessageID>urn:uuid:421A2EE66BA3A42A8C1203350641340</wsa:MessageID>
Set this element to a unique ID for each event sent. A UUID is suggested. If you
use ALFEventManagerOneWayDocLit in the <wsa:To> element, this value is not
critical since no reply is expected; however, it might be useful in the future.

• <ns:EventId>1</ns:EventId>
Set this element to a unique ID for each event sent. Although this is not critical,
it allows you to identify the particular instance of the event, which might be
useful to correlate data.

• <ns:ObjectId>1</ns:ObjectId>
This element identifies the instance of the object responsible for the event.
Although this is not critical, a value recognized by your event definition might be
useful for accessing data in your event definition to correlate data.

• <ns:Timestamp>2008-05-12T21:19:20.671Z</ns:Timestamp>
This element records the time the event was sent. It must be in xsd:dateTime
format (a subset of ISO 8601). It can be set to nil as shown, where xsi: is the
namespace xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance".

<ns:Timestamp xsi:nil="true"/>

• <myev:MyEventDefinitionData>Test Data</myev:MyEventDefinitionData>
This element is the Extension data for this event, as defined by your event
definition. The sample event definition only defines one element
(MyEventDefinitionData) in its Extension data. Your event definition can send
more complex data.

Configuring Solutions Business Manager to Receive E-
Mail Events
The Web service–based event mechanism exposed by SBM can accept events either
through HTTP or via e-mail. Events through HTTP are enabled by default and require no
additional configuration beyond the basic installation of SBM. Events through e-mail
require that SBM be configured to access an e-mail mailbox provided by an external e-
mail server. SBM Configurator provides options to configure this feature.

SBM Orchestration Guide 231

Setting Up a POP3 E-mail Account
The SBM Event Manager can support receiving events only from a POP3-compliant e-mail
server. To use the e-mail event feature, you must set up a dedicated e-mail account on
the POP3 server, establishing the e-mail address that you want to use to accept the e-
mail event requests. To configure SBM, you need to know the POP3 server host name, the
port used by your POP3 server, the e-mail account name, and the e-mail account
password.

Important: A single-part message that contains only plain text is treated as a
SOAP message and accepted as an ALF e-mail event. If SBM receives a single-
part message that only contains HTML, SBM cannot process it and the event is
ignored. Multi-part messages are accepted, but they must contain the ALF event
in plain text in order for the Event Manager to process the event.

For more information about POP3 mail service behavior, refer to solution S141688.

Options Provided by SBM Configurator
SBM On-Premise only

On the Mail Services tab in SBM Configurator, you can enable mail settings for
Application Repository and the Event Manager. Use the following fields to configure the
Event Manager to receive e-mail events.

Host: The network name of the POP3 e-mail server you want to use to provide the e-mail
inbox for the e-mailed events.

Port: The port used by the POP3 e-mail server. POP3 typically uses port 110. If you want
to use a secure connection to the POP3 mailbox, select the Use SSL option. The default
SSL port is 995.

User name: The e-mail account name for the inbox that your POP3 server provides.

Password: The password to the e-mail account.

Adjusting the Configuration
If you want to adjust the configuration settings for e-mailed events after you have
completed the initial mail server set up, you can change the settings in SBM Configurator
at any time.

Important: If you apply changes while the SBM Configurator runs in utility
mode, browser users may not be able to access the system immediately while
the services are restarting. Therefore, consider applying configuration changes
at a time when users are not actively using the system.

E-mail Event Messages
To send an event by e-mail, you must construct an XML SOAP document in the correct
format and send it to the event-enabled e-mail account.

Here is an example e-mail event message document:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns="http://www.eclipse.org/alf/schema/EventBase/1"
xmlns:exam="http://www.eclipse.org/ALF/ExampleVocabulary"
xmlns:myev="http://www.example.org/MyEventExtensions"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:mym="http://www.example.org/MyEventDefinitionEventExtensions">

Part 2: Advanced Orchestration Topics

232 Solutions Business Manager (SBM)

http://knowledgebase.serena.com/InfoCenter/index?page=content&id=S141688

<soapenv:Header>
<wsa:To>mailto yourEmailUser@yourEmailHost?X-Service-Path=/eventmanager/

→services/ALFEventManagerOneWayDocLit</wsa:To>
<wsa:MessageID>urn:uuid:421A2EE66BA3A42A8C1203350641340</wsa:MessageID>
<wsa:Action>urn:EventNotice</wsa:Action>

</soapenv:Header>
<soapenv:Body>

<ns:ALFEventNoticeDoc version="1.0">
<ns:Base>

<ns:EventId>421A2EE66BA3A42A8C1203350641340</ns:EventId>
<ns:Timestamp>2008-10-17T09:59:51.328-08:00</ns:Timestamp>
<ns:EventType>MyEventDefinitionEvent</ns:EventType>
<ns:ObjectType>MyEventDefinitionObject</ns:ObjectType>
<ns:ObjectId>123</ns:ObjectId>
<ns:Source>

<ns:Product>MyEventDefinition</ns:Product>
<ns:ProductVersion>1.0</ns:ProductVersion>
<ns:ProductInstance>MyEventDefinitionInstance</ns:ProductInstance>

</ns:Source>
<ns:User>

<ns:ALFSecurity>
<ns:UsernameToken>

<ns:Username>sbmUser</ns:Username>
<ns:Password>sbmUserPassword</ns:Password>

</ns:UsernameToken>
</ns:ALFSecurity>

</ns:User>
</ns:Base>
<ns:Extension>

<mym:MyEventDefinitionData>Example Tool Data</mym:MyEventDefinitionData>
</ns:Extension>

</ns:ALFEventNoticeDoc>
</soapenv:Body>

</soapenv:Envelope>

Header Values
The most important different between an e-mail event and an event sent through HTTP is
that a Web service addressing header must be used:

<soapenv:Header>
<wsa:To>mailto yourEmailUser@yourEmailHost?X-Service-Path=/eventmanager/

→services/ALFEventManagerOneWayDocLit</wsa:To>
<wsa:MessageID>urn:uuid:421A2EE66BA3A42A8C1203350641340</wsa:MessageID>
<wsa:Action>urn:EventNotice</wsa:Action>

</soapenv:Header>

The value of element wsa:To must be in the following format:

e-mailAddress?X-Service-Path=/eventmanager/services/eventmanagerService

where e-mailAddress is the dedicated POP3 e-mail account set up to receive events, and
eventmanagerService is the Event Manager service that you want to receive the event.

SBM Orchestration Guide 233

The Event Manager service should be either ALFEventManagerOneWayDocLit or
ALFEventManagerDocLit. ALFEventManagerOneWayDocLit is generally preferred, because
it does not send an e-mail response message.

Event Instance Values
The value of wsa:MessageID should typically be a newly allocated UUID in the format
shown. It may be useful to set the value of the message EventId to the same UUID value,
because that will enable you to correlate the e-mail instance with the event.

You do not have to provide a value for ObjectId, although it can be useful to do so.
Generally, it should contain a unique identifier for the object instance that is responsible
for generating the event.

You must provide a value for Timestamp or set it to nil. The expected Timestamp value
uses the subset of ISO 8601 used by XML Schema as specified for the XML Schema type
datetime. To set Timestamp to nil, you must reference the following namespace:

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

and set the nil attribute instead of defining a value:

<ns:Timestamp xsi:nil="true"/>

Event Match Values
As with any SBM external event, the values of EventType, ObjectType, Product,
ProductVersion, and ProductInstance must be set correctly to match a deployed event
mapping. E-mail events are essentially external events, so it is generally necessary to
create a custom event definition WSDL and import it into a process app before you can
usefully process an e-mail event.

Authentication
As with any SBM external event, the event will not be accepted unless valid credentials
are provided in the event request. Currently, the only practical way to do this is to provide
a completed ALFSecurity element. You must fill in the values for Username and
Password. At this time, only plain-text passwords are accepted. Because the credentials
are passed in plain-text, it is recommended that the client send the message over HTTPS.

Extension Data
If your event definition specifies extension data, you can provide the appropriate XML
structure and values inside the Extension element in the message.

Event Definitions and Message Style
Event definitions are used to define service flows that use the RPC literal message style,
whereas the document literal message style is generally preferred for event
communication. The example given above follows the document literal format and the
document-literal event is contained within the root document element:

<ns:ALFEventNoticeDoc xmlns:ns="http://www.eclipse.org/alf/schema/EventBase/1">
…Event Base and Extension elements go here…

</ns:ALFEventNoticeDoc>

Part 2: Advanced Orchestration Topics

234 Solutions Business Manager (SBM)

Your message should validate against the WSDL/schema for the ALFEventManagerDocLit
or ALFEventManagerOneWayDocLit services:

http://localhost:8085/eventmanager/services/ALFEventManagerDocLit?wsdl

http://localhost:8085/eventmanager/services/ALFEventManagerOneWayDocLit?wsdl

If you generate an XML document from an RPC literal service definition, the event content
is contained within the parameter element <EventNotice xmlns="">, which in turn is
contained within the operation element <ns:EventNotice
xmlns:ns="http://www.eclipse.org/alf/schema/EventBase/1">:

<ns:EventNotice xmlns:ns="http://www.eclipse.org/alf/schema/EventBase/1">
<EventNotice xmlns="">

…Event Base and Extension elements go here…
</EventNotice>

</ns:EventNotice>

To create the correct message for the e-mail event, you must replace the operation and
parameter EventNotice elements with the document root element, ALFEventNoticeDoc.

Upgrading Existing Event Definitions
The following topics describe how to upgrade your event definitions to work with the
current version of Solutions Business Manager.

• Upgrading from SBM R3.X [page 235]

• Upgrading from SBM 2008 R2.X [page 235]

Upgrading from SBM R3.X
The following points discuss upgrading your external event definition WSDL files from SBM
2008 R3.X to work with the current version.

• Replace the SBM 2008 R3.x Event Manager .wsdl and .xsd files with new ones from
the Advanced Orchestration Package.

• Change the type of <your product value> EventBaseType’s EventId to
SourceEventIdType.

Upgrading from SBM 2008 R2.X
Remember the following points when upgrading your existing event definition WSDL files
from SBM R2.X to the current version.

• Replace the SBM 2008 R2.x Event Manager .wsdl and .xsd files with new ones from
the Advanced Orchestration Package.

• Change the type of <your product value> EventBaseType's EventId to
SourceEventIdType.

• You might need to update your clients to set ALFSecurityType in order to fulfill the
authentication requirements if you choose to use Single Sign-On (SSO).

SBM Orchestration Guide 235

Starting in SBM 2008 R3, there is an authentication mechanism for external events.

• Note: The following information only applies to systems where external
events were used with orchestration workflows in which SSO was not used:

With the use of security tokens for all communication with SBM components
regardless of authentication method, it is now necessary to provide credentials in the
User element of external events that are processed by the Event Manager.
Credentials must be supplied in order to receive a security token.
Previous SBM releases allowed anonymous events if SSO was disabled. Security
tokens are now used in all underlying communication. As part of the upgrade
process, in order to still accept external events without credentials, the Event
Manager is automatically configured to continue to accept external events without
authentication credentials. If SSO was enabled prior to upgrade, then it is assumed
that external events always included credentials and will continue to do so in your
environment.

Important: If you are currently using external events without SSO, it is
strongly recommended that you adjust the source of those external events
to now include credentials. Once you adjust the external source to include
a credential, you can then manually override the Event Manager settings
by setting the no_authentication parameter to “false” in the
alf.properties file. For configuration instructions, visit the
Knowledgebase and search for no_authentication.

After upgrading, the no_authentication setting is independent of the SSO setting.
If you are performing a new installation, you can override the default behavior for
the Event Manager and enable it to accept external events without credentials. For
configuration instructions, visit the Knowledgebase and search for
no_authentication.

For SBM Application Engine Web services, the SBM Application Engine auth still
overrides the security token auth. In some cases, this is useful in day-to-day
operations and may be useful as you upgrade. For example, orchestration workflows
that contain coded auth for the SBM Application Engine service calls will continue to
work if the external event is changed to send a credential; the coded auth will
override the security token and continue work as it did prior to upgrade.

Part 2: Advanced Orchestration Topics

236 Solutions Business Manager (SBM)

http://knowledgebase.serena.com
http://knowledgebase.serena.com

Chapter 10: Calling RESTful Web Services
from an Orchestration Workflow

RESTCaller is a SOAP wrapper utility service provided by SBM that enables SBM
orchestration workflows to call REST-based Web services. This chapter describes the utility
and its applicable operations, arguments, and responses.

This chapter contains the following sections:

• Introduction [page 237]

• RESTCaller Operations [page 238]

• Request Arguments [page 241]

• Request Responses [page 245]

• Sending and Receiving HTTP Body Data [page 246]

• Constructing Working Data XML to Map to JSON [page 250]

Introduction
You can use the orchestration workflow service step to access and configure the
RESTCaller service to call REST Web services.

SBM Orchestration Guide 237

XML data from the orchestration workflow can be mapped into the RESTCaller and sent to
the REST Web service as text, XML, or as JSON data. Similarly, XML data returned by the
REST Web service can be mapped into the orchestration workflow. If the REST Web
service returns JSON data, it can be translated to XML and mapped into the orchestration
workflow as XML.

Note: If you are modifying process apps created in a prior version of SBM, you
must do one of the following to refresh the process app with the latest
RESTCaller functionality:

• If you are using a process app that was created prior to 10.1.5 (or if you
delete the service from your process app):

▪ From the context menu, right-click the Web Services node, select
Add, and then select RESTCaller.

▪ From the context menu, right-click the Web Services node, select Add
New Web Service, and then manually import the RESTCaller.wsdl
into your orchestration. The RESTCaller.wsdl can be found here:

http://ServerName:Port/orchestrationutilities/services/RESTCaller?wsdl

• If you have an existing process app created in SBM version 10.1.5 or
higher, you can get the latest features by viewing the property pane of the
RESTCaller service in your Orchestration and clicking the WSDL Refresh
button. Features added since 10.1.5 are upward compatible and refreshing
the .wsdl is only necessary if you need the new features.

RESTCaller is a system service that uses Security Token authentication by
default. If you import RESTCaller, you must ensure that it uses Security Token
authentication by performing the following steps:

1. Log in to SBM Application Repository.

2. Open the Environments view and select your environment.

3. Edit the RESTCaller service endpoint and set the authentication to
Security Token.

4. Redeploy the process app to the environment.

RESTCaller Operations
This section describes the available RESTCaller operations.

PUT
Sends an HTTP PUT request to the rest service URL. Generally used for creating the
addressed resource.

Arguments:

• restUrl

• options

• params

Part 2: Advanced Orchestration Topics

238 Solutions Business Manager (SBM)

• bodyXML

Options that apply:

• returnAllHttpCodes

• copyResultsAsText

• responseConversion

• sendAsJSON

• sendAsText

• sendParamsAsFormData

• sendThisContentType

• authorizationType

• httpAuthorization

• returnJSONTypeHints

• httpHeaders

• preserveJSONEscapes

Note: HTTP PUT commands are often blocked by outbound firewall policies;
therefore, ensure you have access through the firewall before the orchestration
workflow executes a PUT command.

GET
Sends an HTTP GET request to the rest service URL. Generally used for retrieving the
addressed resource, but some services may use GET for other purposes as well.

Arguments:

• restUrl

• options

• params

Options that apply:

• returnAllHttpCodes

• copyResultsAsText

• responseConversion

• authorizationType

• httpAuthorization

• returnJSONTypeHints

• httpHeaders

SBM Orchestration Guide 239

• preserveJSONEscapes

POST
Sends an HTTP POST request to the rest service URL. Generally used for updating the
addressed resource.

Arguments:

• restUrl

• options

• params

• bodyXML

Options that apply:

• returnAllHttpCodes

• copyResultsAsText

• responseConversion

• sendAsJSON

• sendAsText

• sendParamsAsFormData

• sendThisContentType

• authorizationType

• httpAuthorization

• returnJSONTypeHints

• httpHeaders

• preserveJSONEscapes

DELETE
Sends an HTTP DELETE request to the rest service URL. Generally used for deleting the
addressed resource.

Arguments:

• restUrl

• options

• params

Options that apply:

• returnAllHttpCodes

Part 2: Advanced Orchestration Topics

240 Solutions Business Manager (SBM)

• authorizationType

• httpAuthorization

• httpHeaders

Note: HTTP DELETE, PUT, and PATCH commands are often blocked by outbound
firewall policies; therefore, ensure you have access through the firewall before
the orchestration worklow executes these commands.

Another workaround is to use an alternate HTTP header such as X-HTTP-
Method-Override: PATCH, X-HTTP-Override, or X-Method-Override. Whether
these headers work or not depends on the framework that implements the REST
service.

HEAD
Returns the headers that result from GET but does not return the resource.

For more information, visit https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

OPTIONS
Returns information about methods the resource supports, typically with an Allow header
that lists the operations. Request and response body data is optional.

For more information, visit https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

PATCH
Allows partial updates of resources.

For more information, visit https://tools.ietf.org/html/rfc5789.

TRACE
Returns the sent message as it is received.

For more information, visit https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

Request Arguments
This section describes the available request arguments. The following arguments can be
used by REST Web service operations.

restUrl
This is the URL of the REST service or resource in the form:

http://server:port/service/resource...

If you are using a custom endpoint, you can select the custom endpoint and map restUrl
to the Url parameter in the custom endpoint.

Tip: You can use the custom endpoint for restUrl and the RESTCaller params
input to add any required HTTP query string parameters to manipulate or
retrieve the resource you want. For an example use case, refer to Using Custom
Endpoints with RESTCaller [page 166].

SBM Orchestration Guide 241

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://tools.ietf.org/html/rfc5789
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

options
The options control how the RESTCaller service creates the HTTP request that it sends to
the REST service and how it translates the response from the REST service. Not all options
apply to all RESTCaller operations as noted for the respective operation. Where the option
does not apply, no action is taken.

• returnJSONTypeHints

At times it is useful for the received XML element names to have type hint prefixes.
The returnJSONTypeHints option makes it easier to copy received data to a send
data structure since the elements defined in the sending and receiving XML
structures can be declared using the same names. Set the returnJSONTypeHints
option to true if this is desired.

• returnAllHttpCodes

By default, for any HTTP return code from the HTTP service or resource that is not in
the 2XX success range (such as 200, 201), the RESTCaller service throws a
RESTCallerFault. Setting the returnAllHttpCodes option to true suppresses this
behavior; this means the RESTCaller will return whatever HTTP return code the HTTP
service or resource used to respond. This allows the orchestration workflow to
explicitly process these responses. Note that RESTCaller can throw a RESTCallerFault
for reasons other than an HTTP code that is out of the 2XX range.

• copyResultsAsText

The RESTCaller will translate the response body to XML depending on the
contentType of the HTTP service or resource response. To reduce the volume of
extraneous data, if the data is translated to XML, the actual text of the response
body not returned. You can set copyResultsAsText to true to instruct the
RESTCaller service to return the body text, even if an XML translation was
performed.

• responseConversion

By default, the RESTCaller parses the response body, and translates it to XML
depending on the contentType of the HTTP service or resource response.
ContentTypes that are processed include:

▪ application/xml

▪ text/xml

▪ application/xhtml+xml

▪ application/json

Occasionally, the response content or its contentType may not correspond with one
of these recognized contentType values. This option instructs the RESTCaller how to
attempt to translate the body response. Note that if the response is not actually in
the form that is specified, RESTCaller may throw a RESTCallerFault. The following
values can be specified:

▪ CONTENTTYPE – This is the default. The response content type is used.

Part 2: Advanced Orchestration Topics

242 Solutions Business Manager (SBM)

▪ XML – An XML response is assumed, and an attempt is made to parse the data to
XML.

▪ JSON – A JSON response is assumed, and an attempt is made to parse the data to
JSON.

▪ NONE – No format is assumed, and the response is returned as text.

• sendAsJSON

By default, RESTCaller sends the operation bodyXML data argument as XML with the
contentType value set to application/xml. If the service or resource expects JSON
data, set this option to true to instruct the RESTCaller service to translate the
bodyXML data to JSON and send the translated JSON data with the content type
application/json.

Note: When you use the sendAsJSON option, you must declare a
"JsonDoc" complexType element (with no namespace) under the bodyXML.
For example, you can create a working data variable, “bodyXML”, of
complexType, add JsonDoc as a complexType child element with no
namespace, and then structure your request under JsonDoc. You then map
the working data “bodyXML” to the RESTCaller bodyXML parameter. For
more details, refer to Constructing Working Data XML to Map to JSON
[page 250].

• sendAsText

Sends the operation bodyXML data arguments as text with the contentType value set
to text/plain. By default, the content type is set to text/plain but you can
override this by setting a specific contentType with the sendThisContentType
option.

Note: When you use the sendAsText option, you must declare a "TextDoc"
string element (with no namespace) under the bodyXML. For example, you
can create a working data variable, "bodyXML", of complex type, add
TextDoc as a string child element with no namespace, and then assign the
text string you want to send to TextDoc. You then map the working data
"bodyXML" to the RESTCaller bodyXML parameter.

• sendParamsAsFormData

Enables you to construct URL query parameters but have them sent as the body on a
POST. URL parameters can be sent as part of the URL or via the params argument.
Normally these are added together and sent as the URL query string, but with this
option, any parameters on the URL remain part of the URL and any parameters
passed using the params array argument are converted to a query string text that is
sent as the body.

With this option, the content type is set to application/x-www-form-urlencoded
but you can override this by setting a specific contentType with the
sendThisContentType option. The bodyXML argument is ignored if
sendParamsAsFormData is specified.

• sendThisContentType

By default, RESTCaller sends the operation bodyXML data argument as XML with the
contentType value set to application/xml. If the sendAsJSON option is true, the

SBM Orchestration Guide 243

contentType value application/json is sent. If the service or resource requires a
particular contentType value other than these defaults, use this option to instruct the
RESTCaller to send the specified value for the contentType instead.

The working data variable that is mapped to bodyXML must be constructed according
to certain rules in order to use this option. For more information, refer to
Constructing Working Data XML to Map to JSON [page 250].

• authorizationType

By default, RESTCaller does not attempt any authorization with the service or
resource that is called. Several methods of authorization are supported, and this
option must be set to enable the desired method. In addition, the appropriate fields
of the corresponding httpAuthorization option must be filled in as described.

The possible values include:

▪ BASIC – HTTP Basic authorization is attempted. You must provide the
httpAuthorization argument.

▪ NONE – The default. No authorization is attempted.

▪ NTLM – Authorization using Windows credentials. You must provide the
httpAuthorization argument, and then specify the username, password, and
domain.

▪ SBMTOKEN – Forwards the implicit SBM SAML token to the service or resource. This
option primarily enables RESTCaller to invoke REST services that are provided by
SBM.

▪ ENDPOINT – Indicates that the authentication information is provided by a custom
endpoint. The custom endpoint fields must be mapped to the httpAuthorization
argument.

• httpAuthorization

Enter the required information as follows:

▪ If the authorizationType argument is set to BASIC, the basic element of
httpAuthorization must have values for username and password. These values
are used to complete the HTTP Basic authorization header, which takes the form:

Authorization: Basic <base64encoded representation of the string username:password>

▪ If the authorizationType argument is set to NTLM, the ntlm element of
httpAuthorization must have values for username, password, and domain.

▪ If the authorizationType argument is set to ENDPOINT, the endpoint element
of httpAuthorization must identify the desired custom endpoint. Map the
EndpointID value from the corresponding custom endpoint.

• httpHeaders

Enables you to send arbitrary HTTP headers with the REST service request in case
the service requires some particular HTTP headers. Note that the HTTP header,

Part 2: Advanced Orchestration Topics

244 Solutions Business Manager (SBM)

“Content-Type” is set implicitly by RESTCaller or via the sendThisContentType
option and should not be set via the httpHeaders option.

• preserveJSONEscapes

This option preserves JSON escape characters in return values in their JSON-escaped
format. By default, JSON escape characters returned by a JSON REST service are
converted to the actual character; however, because some characters are invalid in
XML, when RESTCaller attempts to convert the JSON result to XML, the call fails if
the character is converted to an invalid character in XML. To avoid this issue, use
preserveJSONEscapes to preserve the characters in their escaped format.

params
This argument is a list of key-value pairs for query parameters to append to the service or
resource URL. The keys and their respective values are appended to the URL after the
question mark (?), and are separated by an ampersand (&). For example, given a key
(key1) with a value (value1), and another key (key2) with a value (value2), the resulting
URL is sent with the request:

http://server:port/service/resource?key1=value1&key2=value2

Tip: You can send empty keys or values if the value should be null or
uninitialized. For example:

http://server:port/service/resource?=value1

Or:

http://server:port/service/resource?key1=

However, RESTCaller does not support null key names (values with no preceding
key=) like:

http://server:port/service/resource?value1

bodyXML
This argument sets the data for the body of the PUT and POST commands.

• If you are sending JSON data, you must instruct RESTCaller to translate the bodyXML
to JSON and you must include JsonDoc under the bodyXML. For details, see
sendAsJSON.

• If you are sending text data, you must instruct RESTCaller to translate the bodyXML
to text and you must include TextDoc under the bodyXML. For details, see
sendAsText.

Request Responses
This section describes the request responses. The following responses are returned by
REST Web service operations.

SBM Orchestration Guide 245

code
This is the returned HTTP response code. If the HTTP services or resource request is
successful, the HTTP response code that is returned is in the 2XX range. By default, if this
code is outside the success range, RESTCaller throws a RESTCallerFault. If the
returnAllHttpCodes option is set to true, all HTTP response codes are returned.

message
This is the returned HTTP response message. By default, if the HTTP response code is
outside the success range, RESTCaller throws a RESTCallerFault. If the
returnAllHttpCodes option is set to true, all HTTP response codes are returned along
with the corresponding HTTP response message.

resultString
Returns the HTTP body text, unless RESTCaller can return the response body formatted as
XML. If the response body can be formatted as XML, this field is empty unless the
copyResultAsText option is set to true.

resultXML
Returns the HTTP body text if RESTCaller can return the response body formatted as XML.

resultHeaders
Returns the HTTP headers from the REST service response in the form of an array of
structures containing name and value.

Sending and Receiving HTTP Body Data
The following sections describe how to construct working data to map XML and JSON body
data to and from the RESTCaller service and the REST service that it is calling.

Sending XML Data
To send XML data:

1. Create a working data variable with some convenient name, such as
"BodyXMLVariableOut".

2. Set the type to Private Complex.

3. Add a child DataElement to represent the document root element of the HTTP body
XML. It should be named and typed the same as the root XML element of the data
that appears in the body of the REST HTTP call. Take care to set the correct XML
namespace as expected by the REST services, because the child DataElement will
take the namespace defined of the Orchestration inherited from the parent working
data variable (in this example, BodyXMLVariableOut) by default. In most cases, the
document root element should be a Private Complex type. Naming the child
DataElement, "RESTServiceDocument", creates the working data structure:

BodyXMLVariableOut
RESTServiceDocument

which results in the document root element sent in the HTTP body as:

Part 2: Advanced Orchestration Topics

246 Solutions Business Manager (SBM)

<RESTServiceDocument>…</RESTServiceDocument>

4. Add any further Child DataElements under the document root element. These should
be added with the appropriate names, types, and namespaces to create the same
structure as the expected XML. For example, naming the Child DataElement,
"Name":

BodyXMLVariableOut
RESTServiceDocument

Name

Results in the root XML element sent in the HTTP body as:

<RESTServiceDocument>
<Name>…</Name>…

</RESTServiceDocument>

5. Initialize the created working data variable structure DataElements with appropriate
default values or via Calculate steps in the normal way.

Note: If a DataElement is optional and no value is mapped to it, it will not
be sent in the resulting XML structure.

6. Create a RESTCaller service step, and set the operation to PUT or POST, and set the
Option values as appropriate. Map the created working data variable to the
"bodyXML" parameter. For example, the variable "BodyXMLVariableOut" should be
mapped to the "bodyXML" parameter. At runtime, the content
"RESTServiceDocument" is copied to set the content of the "bodyXML" parameter
and sent as the HTTP body content of the resulting HTTP REST service call:

<RESTServiceDocument>
<Name>my name</Name>
<OtherElement>some value</OtherElement >

</RESTServiceDocument>

Receiving XML Data
To receive XML data:

1. Create a working data variable with a convenient name such as
"BodyXMLVariableIn".

2. Set the type to Private Complex.

3. Add a Child DataElement to represent the root element of the HTTP body XML. It
should be named and typed the same as the root XML element of the data that will
appear in the body of the REST HTTP call response. Take care to set the correct XML
namespace as returned by the REST services because the Child DataElement will
take the namespace defined of the Orchestration inherited from the parent working
data variable (in this example, BodyXMLVariableIn) by default. In most cases, the
root element should be a Private Complex type. For example, naming the Child
DataElement "RESTServiceDocument" creates the following working data structure:

SBM Orchestration Guide 247

BodyXMLVariableIn
RESTServiceDocument

which creates a container for the expected document root XML element as:

<RESTServiceDocument>…
</RESTServiceDocument>

4. Add any further Child DataElements under the HTTP body root element. These
should be added with appropriate names, types, and namespaces to create the same
structure as the expected XML. For example, naming the Child DataElement "Name"
results in the expected root XML element to be received in the HTTP body as:

<RESTServiceDocument>
<Name>…</Name>…

</RESTServiceDocument>

Important: In addition to the name, it is essential to set the namespace
property correctly for any element in this structure. If the declared
namespace does not match the namespace of the element in the received
XML, the orchestration interprets them as different elements and does not
copy the value data.

Tip: Due to the way Orchestrations work, it is only necessary to declare
the specific elements from the received XML that you actually need to
process in the Orchestration. The working data variable must be created
with sufficient structure to place the element at the correct path in the
XML data, but elements that are not part of a path and not accessed do
not need to be declared.

5. Create a RESTCaller service step, and set the operation to GET, PUT or POST as
appropriate. Set the Option values as appropriate. Map any inputs as required and
described above.

6. Create a Calculate step that follows the RESTCaller service step, and map the
RESTCaller service step response results.result.XML to the variable that you created
to receive the returned data. For example, "BodyXMLVariableIn".

7. Create further Calculate steps to extract specific values from the variable that you
created to receive the returned data. For example, use the "BodyXMLVariableIn"
variable to retrieve the value of the returned RESTServiceDocument and its children.
The value of the Name child element is retrieved using the calculate Expression
BodyXMLVariableIn.RESTServiceDocument.Name.

Note: If the REST service provides an XSD schema for the XML document it
expects, it may be possible to import that schema and use the named types
defined within it to set the type of the root XML elements for either sent or
received XML. For details on this advanced usage, search the knowledge base at
https://www.microfocus.com/support-and-services/#SBM for solution S140078.

Part 2: Advanced Orchestration Topics

248 Solutions Business Manager (SBM)

https://www.microfocus.com/support-and-services/#SBM
http://knowledgebase.serena.com/InfoCenter/index?page=content&id=S140078

Sending JSON Data
To send JSON data:

1. Create a working data variable with a convenient name such as
"BodyJSONVariableOut".

2. Set the type to Private Complex.

3. Add a Child DataElement to hold the XML that will be converted to JSON data. It
must be named "JsonDoc". Set the type to Private Complex. Set the namespace to
empty by deleting any value in the Namespace property.

4. Add any further Child DataElements under the JsonDoc root element. These should
be added with the appropriate names and types to create the same structure as the
expected JSON. Set the namespace to empty by deleting any value in the
Namespace property. The specific rules for correctly structuring and naming the
elements is explained in Constructing Working Data XML to Map to JSON [page 250].

5. Initialize the created working data variable structure DataElements with appropriate
default values and/or via Calculate steps in the normal way.

Note: If a DataElement is optional and no value is mapped to it, it will not
be sent in the resulting XML structure or the JSON structure that it
converts to.

6. Create a RESTCaller service step, and set the operation to PUT or POST as
appropriate. Set the sendAsJSON Option parameter to true. Set other Option values
as appropriate. Map the created working data variable to the "bodyXML" parameter.
For example, the variable "BodyJSONVariableOut" should be mapped to the
"bodyXML" parameter. At runtime, the content "JsonDoc" will be copied to set the
content of the "bodyXML" parameter and then converted to JSON as the HTTP body
content of the resulting HTTP REST service call.

Receiving JSON Data
To receive JSON data:

1. Create a working data variable with a convenient name such as
"BodyJSONVariableIn".

2. Set the type to Private Complex.

3. Add a Child DataElement to hold the XML that will be converted to JSON data. It
must be named "JsonDoc". Set the type to Private Complex. Set the namespace to
empty by deleting any value in the Namespace property.

SBM Orchestration Guide 249

4. Add any further Child DataElements under the JsonDoc root element. These should
be added with the appropriate names and types to create the same structure as the
expected JSON. Set the namespace to empty by deleting any value in the
Namespace property. The specific rules for correctly structuring and naming the
elements is explained below in Constructing Working Data XML to Map to JSON
[page 250].

Important: In addition to the name, it is essential to set the namespace
property to empty by deleting any value in the Namespace property for
any element in this structure because the XML that is converted from JSON
uses no namespace. If the declared namespaces for all the elements are
not empty, they will not match the empty namespace of the elements in
the received JSON XML. The orchestration interprets them as different
elements and does not copy the value data.

Tip: Due to the way Orchestrations work, it is only necessary to declare
the specific elements from the received JSON XML that you actually need
to process in the Orchestration. The working data variable must be created
with sufficient structure to place the element at the correct path in the
XML data, but elements that are not part of a path and not accessed do
not need to be declared.

5. Create a RESTCaller service step, and set the operation to GET, PUT or POST as
appropriate. Set the Option values as appropriate. Map any inputs as required and
described above.

6. Create a Calculate step that follows the RESTCaller service step, and then map the
RESTCaller service step response results.result.XML to the variable that you created
to receive the returned data. For example, "BodyJSONVariableIn".

7. Create further Calculate steps to extract specific values from the variable that you
created to receive the returned data. For example, use "BodyJSONVariableIn" to
retrieve the value of the returned Name child element.

Constructing Working Data XML to Map to JSON
JSON has Objects {} that contain an unordered list of key:value pairs and Arrays [] that
contain an ordered list of values. Values are implicitly typed as either string, number,
boolean, or null. The values in a JSON array need not be of the same type. Key names
have no special restricted characters; this means they have the same allowed character
set as string values. Some special characters in strings must be escaped with an escape
character sequence using the backslash character \.

There are several considerations when constructing working data variables to map to or
from JSON data:

• General Rules [page 251]

• Type [page 251] – Distinguishing between strings, numbers, and booleans

• Structure – Objects [page 252]

• Structure – Arrays [page 254]

• Sending Empty Arrays, Objects, and Strings [page 254]

Part 2: Advanced Orchestration Topics

250 Solutions Business Manager (SBM)

• Mixed Arrays and returnJSONTypeHints [page 255]

• Character Escaping [page 256] – Handling characters that are restricted or not
allowed in XML but are allowed in JSON

• XML Start Characters [page 257]

General Rules
Note the following general rules:

• For requests sent as JSON, the root element contained by the working data variable
must be named JsonDoc. The JsonDoc element must be a complexType and have no
namespace.

• Elements declared under JsonDoc must have no namespace.

• For requests sent as text, the root element contained by the working data must be
named TextDoc. The TextDoc element must be a string type and have no
namespace.

• Elements declared under TextDoc must have no namespace.

Type
XML value types are defined separately from the XML data itself, typically in an XSD
schema. RESTCaller does not have access to the .XSD schema for the bodyXML, and
instead relies on a default mapping scheme with element name type hint prefixes to
distinguish non-default types. If the type hints are not used, by default an Element with
child Elements is interpreted as a JSON Key with an Object value, and an Element with no
child Elements is interpreted as a JSON key with a string value. For example:

<myObject>
<myString>string value</myString>
<myNumber>123456</myNumber>
<myBooelan>true</ myBooelan >

<myObject>

Will be:

"myObject": {
"myString": "string value",
"myNumber": "123456",
"myBoolean": "true"

}

Note that the values for myNumber and myBoolean are quoted and therefore typed as
strings in the JSON structure which is incorrect. The type hint prefixes override this
default behavior allowing JSON Array, Number and Boolean values to be set correctly. The
type hint prefixes are:

• ARRAY _va

• OBJECT _vo

• NUMBER _vn

SBM Orchestration Guide 251

• STRING _vs

• BOOLEAN _vb

To use a type hint prefix, prepend the appropriate type hint prefix to the name of the
element. For example, if an element named myNumber is typed as some form of number
(integer, long, float, double) such as 123456, then prefixing its name with _vn will create
an element as follows:

<_vomyObject>
<_vsmyString>string value</_vsmyString>
<_vnmyNumber>123456</_vnmyNumber>
<_vnmyBoolean>123456</_vnmyBoolean>

<_vomyObject>

When this element is sent as JSON, the RESTCaller service will remove the type hint prefix
when converting the element name to a JSON key name. Using this example, the JSON
key:value will be:

"myObject": {
"myString": "string value",
"myNumber": 123456,
"myBoolean": true

}

Important: Because the type hint prefix is removed before the name is
converted to a JSON key name, the type hint prefix should not be considered as
part of the name for the purposes of uniqueness. Note that the Working Data
editor in SBM Composer is unaware of the RESTCaller type hint prefixes and
cannot enforce uniqueness if the type hint hides the duplicate name.

For receiving JSON data, by default the JSON key names will become the XML element
names and values will convert to the element text value in the case of strings, numbers,
and booleans. For object and array values, a containing element named for the key will be
created. Object properties will be sub-elements in any order. Array item values will be
held in multiple repeating <Item> elements in the specified array order. Object and Array
conversion is discussed in more detail in the structures below.

Tip: Use the returnJSONTypeHints option to receive data with elements
prefixed with the JSON type hints _vo, _va, _vs, _vn, vb as appropriate.

Structure – Objects
Elements with PrivateComplexType map to JSON objects by default. For example, this XML
structure:

<JsonDoc>
< myObject>…</myObject>

</JsonDoc>

maps to the JSON document:

{
"myObject": { …

Part 2: Advanced Orchestration Topics

252 Solutions Business Manager (SBM)

}
}

Elements that are children of the PrivateComplexType Element map to the key:values of a
JSON object by default. This XML structure:

<JsonDoc>
< myObject>

<aMember>a member value</aMember>
<bMember>b member value</bMember>
<cMember>c member value</cMember>

</myObject>
</JsonDoc>

maps to the JSON document:

{
"myObject": {

"cMember": "c member value",
"bMember": "b member value",
"aMember": "a member value"
}

}

Note: The object members may appear in a different order within the Object
value because JSON object members are unordered. Each member should have
a unique key name within the object.

The type hint name prefix, _vo, may be optionally be used. Typing hint name prefixes are
removed to create the JSON name. Since the type hint gets removed from the element
name when converting to JSON, it should not be considered as part of the key name for
the purposes of uniqueness. This XML structure:

<JsonDoc>
< _vomyObject>

<aMember>a member value</aMember>
<bMember>b member value</bMember>
<cMember>c member value</cMember>

</_vomyObject>
</JsonDoc>

maps to the JSON document:

{
"myObject": {

"aMember": "a member value",
"bMember": "b member value",
"cMember": "c member value"

}
}

SBM Orchestration Guide 253

Structure – Arrays
Elements that are children of the Private ComplexType can be used to declare arrays but
special a type hint name prefix, _va, must be used to distinguish it from an object and
ensure the correct JSON structure is created.

If the JSON array contains values of the same type, a repeating element can be used to
define the array values. The special name—Item—should be used to name this element in
order to be consistent with data that is converted from JSON. The child Item element can
have a type hint prefix to indicate its type. For example, refer to the following XML
structure:

<JsonDoc>
<_vamyArray>

<_vnItem>123</_vnItem>
<_vnItem>456</_vnItem>

</_vamyArray >
</JsonDoc>

Maps to the JSON document
{ "myArray": [

123,
456
]

}

Important: Due to the way the XML to JSON conversion works, it detects
repeating elements in the XML and attempts to convert them to JSON arrays.
However, this works inconsistently and it is strongly recommended to use the
pattern described here with an array type hint prefix on a containing element
that names the array key with a contained repeating element to hold the array
values.

Important: JSON arrays can contain mixed value types. That is, a JSON array
can contain string, number, array, object or Boolean mixed together. For more
information, see Mixed Arrays and returnJSONTypeHints [page 255].

Sending Empty Arrays, Objects, and Strings
To send empty arrays, objects, and strings you must use the appropriate prefix (listed
below), otherwise the default is a string.

JsonDoc defaults to a string value "", and if it is empty then "" is sent.

• _voJsonDoc is an object {}, and {} is sent if the element value is set to "" with a
calculate step.

• _vaJsonDoc is an array [], and [] is sent if the element value is set to "" with a
calculate step. By providing the appropriate child variables, you can also use this to
send a JSON document that is an array.

• _vsJsonDoc is a string "", and if it is empty "" is sent. To send a string, the value
must be set.

• _vnJsonDoc is a number, and if it is empty null is sent. To send a number, the value
must be set.

Part 2: Advanced Orchestration Topics

254 Solutions Business Manager (SBM)

• _vbJsonDoc is a Boolean true or false, and if it is empty null is sent. To send a true
or false, the value must be set.

For example, if you want a JsonDoc that is an empty array [], declare the child element
of complex type (the actual type does not matter here) and no namespace:

MyRequest
....
_vaJsonDoc

Then create a calculate step that assigns an empty string to _vaJsonDoc. This applies to
object _voJsonDoc {}, array _vaJsonDoc [], string _vsJsonDoc "", number
_vnJsonDoc 0, and boolean _vbJsonDoc true|false.

Similarly, if you want an internal JSON property to have a value that is an empty array [],
"MyProperty" : [], declare the child element of complex type (the actual type does not
matter here) and no namespace:

MyRequest
....
_vaMyProperty

Then create a calculate step that assigns an empty string to _vaMyProperty.

The same rules apply to object named values and array Item values.

Value defaults to an string value "", and if it is empty then "" is sent.

• _voValue is an object {}, and if it is empty {} is sent

• _vaValue is an array [], and if it is empty [] is sent

• _vsValue is a string "", and if it is empty "" is sent

• _vnValue is a number, and if it is empty null is sent

• _vbValue is a Boolean true or false, and if it is empty null is sent

Item defaults to an string value "", and if it is empty then "" is sent.

• _voItem is an object {}, and if it is empty {} is sent

• _vaItem is an array [], and if it is empty [] is sent

• _vsItem is a string "", and if it is empty "" is sent

• _vnItem is a number, and if it is empty null is sent

• _vbItem is a Boolean true or false, and if it is empty null is sent

Mixed Arrays and returnJSONTypeHints
For arrays, the container element must have the _va hint and it is not repeating. The child
element name is a placeholder and typically repeats if the array is a single type array (for
example, all strings) and it should have the appropriate type hint for its type (for
example, _vs).

SBM Orchestration Guide 255

Mixed type arrays are possible in JSON and the same applies to them, except there will be
multiple children. Mixed arrays that are returned use the repeating element "Item". If you
use returnJSONTypeHints, the item will be prefixed with the type (_vsItem, voItem, etc).
You can access each set of these using a "for each" step. The XPath selects by name, so
the order does not matter. However, the elements will be re-ordered from the original
because they are separated by type.

Note that with returnJSONTypeHints, the returned root document element is always
JsonDoc even it if is an array.

Also an empty object {} and empty array [] are returned as an empty JsonDoc. Currently
a JsonDoc that is a non-complex type is not supported as a JSON responseConversion
return value. Note that there is a workaround if you expect a plain string or number,
which is to use responseConversion = NONE and look for the response in the
resultString response element.

Character Escaping
XML element names use a restricted set of UNICODE characters with some special rules.
JSON key names can use any UNICODE character with the exception that a small set of
control characters must be escaped rather than used directly. Because of these
differences, JSON key names cannot necessarily be directly used as XML element names
and it is not possible to model any JSON key name using an XML element name.

To overcome this, RESTCaller provides a character escaping mechanism for XML element
names that allows XML element names to model almost any JSON key name. Character
escaping works by substituting the desired character that cannot be used with a special
"escape" character followed by a code character that indicates the desired character.
RESTCaller uses the underscore, '_' , as the special "escape" character and defines the
following codes:

Name XML Escape JSON Character

Start _ The char that follows the _

SPACE _w ' '

UNDERSCORE __ '_'

HEXCHAR _xhhhh The Unicode char with the hex value hhhh

BACKSPACE _b \b

FORDFEED _f \f

LINEFEED _n \n

RETURN _r \r

TAB _t \t

QUOTE _q \q

Part 2: Advanced Orchestration Topics

256 Solutions Business Manager (SBM)

Name XML Escape JSON Character

FORWARDSLASH _s \/

BACKSLASH _c \\

UTF16HEX _uhhhh \uhhhh

Use the preserveJSONEscapes option to preserve JSON escape characters in return values
in their JSON-escaped format.

XML Start Characters
XML allows less characters to be used for the first character of the element name than it
does for following characters. If the JSON key name starts with one of these illegal start
characters, it can be modeled in XML with the _ escape and will be escaped by the REST
caller when the JSON is mapped to XML. For example, XML element names cannot start
with a number (0 through 9). If the desired JSON has a key name "10x10", this can be
declared in XML as <_10x10>. This "start" escape can only be used on the first character
of the XML name. Only invalid start characters that are otherwise valid name characters
can be escaped this way and only if they are the first character of the element name.

Note: Type hint prefixes do not count as part of the element name. If type hint
prefixes are used, the start character is the character immediately following the
type hint prefix. For example, the start character of the element name _vs1000
is 1, which is an invalid start character and must be escaped as _vs_1000.

Note: Namespace name qualifiers are ignored for this purpose, which is why
XML structures that map to JSON data must be declared with no namespace.

UNDERSCORE

Because RESTCaller uses the _ character as an escape, it must be escaped so that the
JSON key can contain an _ character. _ was chosen because it is a valid XML start
character.

HEXCHAR

Illegal XML characters can be encoded with the HEXCHAR escape sequence, where the
illegal character is expressed as a sequence of 4 hex digits that correspond to the
UNICODE character hexadecimal code point value. For example, the char +, is _h002B.
The purpose of this is to allow the character to pass un-escaped in the JSON data. It
should only be used for characters that cannot be directly represented in an XML name,
but can appear directly in a JSON string.

BACKSPACE, FORMFEED, LINEFEED, RETURN, TAB, QUOTE, FORWARDSLASH,
BACKSLASH, UTF16HEX

SBM Orchestration Guide 257

These escapes correspond to the JSON escapes for various special control characters.
Control characters (U+0000 through U+001F) without a special escape must be represented
using with \uhhhh where hhhh is the UNICODE character hexadecimal code point value.
For example, the char Vertical Tab, is _u000A.

Note: JSON allows any character to be represented this way but it is unclear if
such a representation is un-escaped by the consumer or by the JSON parser, so
the behavior of this escape may vary.

Note: Unicode surrogate pairs are not currently supported.

Part 2: Advanced Orchestration Topics

258 Solutions Business Manager (SBM)

	Table of Contents
	Part 1: Basic Orchestration Topics
	Chapter 1: Orchestration Concepts
	About Orchestration Workflows
	Comparing Synchronous With Asynchronous Orchestration Workflows
	About Subroutines
	Example

	About Working Data
	About Data Mapping
	About Value Assignment
	Using Escape Sequences
	About ExtendedField
	About Complex Types and Namespaces
	About Events
	About Application Links and Event Definitions
	About Orchestration Links
	About Web Service Calls and Orchestrations
	About the Step Palette
	About Scope, Compensate, and Throw

	About the Expression Editor
	About Advanced Mapping
	Supported XPath Functions

	About SOAP Messages

	Chapter 2: Orchestration User Interface
	Orchestration Link Editor
	Event Editor
	Event with Reply Dialog Box

	New Orchestration Dialog Box
	Event Definitions List
	Event Definition Configuration Dialog Box
	Event Definition Editor
	Map Event Definition to Workflow Dialog Box
	Event Definition Property Editor
	General Tab of the Event Definition Property Editor

	External Event Configuration Dialog Box
	Orchestration Workflow Editor
	Step Palette
	Orchestration Workflow Property Editor
	General Tab of the Orchestration Workflow Property Editor
	Event Map Tab of the Orchestration Workflow Property Editor
	Data Mapping Tab of the Orchestration Workflow Property Editor

	Event Definition Event Mapping Dialog Box
	Map Workflow to Event Definition Dialog Box
	Select Library Type Dialog Box

	Type Library Editor

	Chapter 3: Orchestration Procedures
	Using Data Mapping
	Creating a Practice Process App for Data Mapping
	Creating Private Simple or Library Type Working Data
	Creating Private Complex Working Data
	Creating Arrays of Working Data
	Setting Default Values
	Setting Source Values Using Suggested Mappings
	Setting Source Element Mappings Manually
	Mapping Identical Structures
	Viewing and Editing Data Element Properties
	Showing the Required Flag
	Clearing Data Mapping

	Creating a New Custom Event Definition
	Importing an Event Definition File for a New Custom Event Definition
	Mapping an Orchestration Workflow to an Event Definition
	Using the Step Palette
	Creating a Practice Process App for Using the Step Palette
	Using the Calculate Step
	Creating an Empty Orchestration Workflow For the Calculate Step
	Practicing With the Calculate Step

	Using the Decision Step
	Creating an Empty Orchestration Workflow For the Decision Step
	Practicing with the Decision Step

	Using the ForEach Step
	Creating an Empty Orchestration Workflow for the ForEach Step
	Practicing with the ForEach Step

	Using the While Step
	Creating an Empty Orchestration Workflow For the While Step
	Practicing With the While Step

	Using the Service Step
	Creating an Empty Orchestration Workflow For the Service Step
	Practicing with the Service Step
	Data Mapping Tab of the Service Step Property Editor
	Mapping SOAP Header Data
	Using Basic Access Authentication
	Using SOAP Headers to Enable WS-Security
	Using Dynamic Endpoints
	Running the StepPalette Process App

	Using the Group Step

	Using the Scope, Throw, and Compensate Steps to Handle Faults From Web Services
	Tutorial: Creating a Practice Process App for Fault Handling
	Using the Scope Step
	Tutorial: Creating An Empty Synchronous Orchestration Workflow to Handle Generic Web Service Faults
	Tutorial: Practicing With the Scope Step to Handle Generic Web Service Faults
	Tutorial: Creating An Empty Synchronous Orchestration Workflow for the Scope Step to Handle Named Faults
	Tutorial: Practicing With the Scope Step to Handle Named Web Service Faults
	Tutorial: Creating an Empty Synchronous Orchestration Workflow for Automatically Adding Catch Branches for Named Faults
	Tutorial: Practicing Automatically Adding Catch Branches for Named Faults
	Rules for Configuring the Catch Branch

	Using the Throw Step
	Tutorial: Creating an Empty Synchronous Orchestration Workflow for the Throw Step
	Tutorial: Practicing With the Throw Step

	Using the Compensate Step
	Tutorial: Creating an Empty Asynchronous Orchestration Workflow for the Compensate Step
	Tutorial: Practicing with the Compensate Step

	Running the Fault Handling Process App
	SerenaSampleTickerService Company Names and Ticker Symbols
	Tutorial: Running the GenericFaultAWF Project
	Tutorial: Altering the GenericFaultOWF to Return a Web Service Fault
	Tutorial: Running the GenericFaultAWF Project and Invoking the CatchAll Branch
	Tutorial: Running the NamedFaultAWF Project and Invoking a Catch Branch
	Tutorial: Running the ThrowAWF Project
	Tutorial: Running the CompensateAWF Project

	Raising External Events

	Chapter 4: Orchestration Use Cases
	Building Dynamic Arrays
	Use Case: Creating an Array to Use in a Subsequent Service Step
	Use Case: Populating Custom Fields

	Raising Events from External Products
	Executing a Post Transition Through a Web Service
	Executing a Copy Transition Through a Web Service
	Sending Multiple Values in an Event
	Sending Values Asynchronously
	Sending Values Synchronously

	Use Case: Updating Subtask Items
	Mapping Custom Endpoint Information in a Service Call
	Using Custom Endpoints with RESTCaller
	Running SBM ModScript from an Orchestration

	Chapter 5: Orchestration Best Practices
	Interaction with Application Workflows
	Naming Standards
	Usage
	Event Handling
	Scalability
	Security

	Chapter 6: Orchestration Tutorial
	Step 1: Create an Orchestration
	Step 2: Create a Synchronous Pre-Transition Orchestration Workflow
	Step 3: Create a Synchronous Post-Transition Orchestration Workflow
	Step 4: Create an Asynchronous Orchestration Workflow
	Step 5: Validate the Process App
	Step 6: Publish the Process App
	Step 7: Deploy the Process App
	Step 8: Run the Process App
	Orchestration Reminder List

	Chapter 7: Troubleshooting Orchestration Workflows
	Troubleshooting Orchestrations Using the Validation Results
	Troubleshooting Orchestrations Using the Common Log Viewer
	Web Service Faults
	Debugging Orchestration Workflows

	Troubleshooting Orchestrations Using Error Messages
	Retrying Failed Asynchronous Events
	Limitations on WSDL Files
	Debugging for Development and Support

	Chapter 8: Renew Utility
	Running Renew
	Extended Character Handling
	Registry Access Restriction Handling
	Problematic Server Configurations
	Renew Commands
	-h or -help
	-listenvs
	-report
	-cleanupScheduledReports
	-clearCommonLog
	-clearEventLog
	-redeploy
	-restartSSFIndexUpdate

	Part 2: Advanced Orchestration Topics
	Chapter 9: Raising External Events
	Events Terminology and Concepts
	Accessing the Advanced Orchestration Package
	Defining an Event Definition
	Creating a Custom Event Definition
	Testing Events from an External Source
	Creating Event Client using Apache Axis2
	Raising an External Event through E-mail
	Creating a Sample E-mail Event SOAP Message

	Configuring Solutions Business Manager to Receive E-Mail Events
	Upgrading Existing Event Definitions
	Upgrading from SBM R3.X
	Upgrading from SBM 2008 R2.X

	Chapter 10: Calling RESTful Web Services from an Orchestration Workflow
	Introduction
	RESTCaller Operations
	Request Arguments
	Request Responses
	Sending and Receiving HTTP Body Data
	Constructing Working Data XML to Map to JSON

