
SERENA®
ORCHESTRATED OPS

Serena Release Automation Guide

Serena Proprietary and Confidential Information

Copyright © 2011-2013 Serena Software, Inc. All rights reserved.

This document, as well as the software described in it, is furnished under license and may be used or copied only
in accordance with the terms of such license. Except as permitted by such license, no part of this publication
may be reproduced, photocopied, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, recording, or otherwise, without the prior written permission of Serena. Any reproduction
of such software product user documentation, regardless of whether the documentation is reproduced in whole
or in part, must be accompanied by this copyright statement in its entirety, without modification. This document
contains proprietary and confidential information, and no reproduction or dissemination of any information
contained herein is allowed without the express permission of Serena Software.

Portions of this document include copyright information of InControl Technology, Inc.

The content of this document is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Serena. Serena assumes no responsibility or liability for any errors
or inaccuracies that may appear in this document.

License and copyright information for 3rd party software included in this release can be found on the Service
Manager product news page at http://support.serena.com/ProductNews/default.aspx and may also be found as
part of the software download available at http://www.support.serena.com.

Trademarks

Serena, StarTool, PVCS, Comparex, Dimensions, Mashup Composer, Prototype Composer, and ChangeMan are
registered trademarks of Serena Software, Inc. The Serena logo and Meritage are trademarks of Serena
Software, Inc. All other products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

U.S. Government Rights

Any Software product acquired by Licensee under this Agreement for or on behalf of the U.S. Government, its
agencies and instrumentalities is "commercial software" as defined by the FAR. Use, duplication, and disclosure
by the U.S. Government is subject to the restrictions set forth in the license under which the Software was
acquired. The manufacturer is Serena Software, Inc., 1850 Gateway Drive, 4th Floor, San Mateo, CA 94404.

Part number: Serena Orchestrated Ops Product version: 4.5

Publication date: 2013-05-15

2 Serena® Orchestrated Ops

Table of Contents
Serena Release Automation .. 17

About This Documentation .. 17

Organization of this Documentation ... 17

Product Support .. 18

Documentation Conventions ... 18

Overview .. 18

Components .. 20

Component Processes ... 21

Application Process .. 22

Environments ... 23

Plug-ins ... 23

Component Versions and the CodeStation Repository....................................... 24

Applications .. 24

Snapshots ... 24

Agents ... 24

Resources .. 25

Resource Groups .. 25

Architecture.. 25

Service Tier ... 27

Clients... 30

Relational Database ... 30

File Storage—Codestation... 30

Relocating Codestation .. 31

Data Center Configuration .. 31

Cold Standby.. 31

Platform Considerations ... 32

Typical Data Center Configurations .. 32

Agents ... 34

Server-Agent Communication .. 35

Serena Release Automation Guide 3

Remote Agents: Crossing Network Boundaries and Firewalls 36

Agent Security ... 37

User Impersonation... 37

User Impersonation on UNIX/Linux Using sudo (or su) 38

Impersonation on Windows Systems .. 38

SSL Mutual Key-based Authentication .. 39

Getting Started .. 40

Single Sign On (SSO) with Serena Business Manager (SBM) 40

Integrating with Serena Business Manager using SSO 40

Configuring Tomcat for SSO ... 40

Single Sign Out... 42

Serena Release Automation Roadmap ... 42

Installing Serena Release Automation .. 42

Creating a Component ... 43

Creating an Application ... 44

Deploy the Component ... 45

Installing Servers and Agents ... 46

Installation Recommendations .. 47

System Requirements.. 47

Server Minimum Installation Requirements ... 47

Server Installation Recommendations .. 48

Agent Minimum Requirements ... 48

32- and 64-bit JVM Support .. 48

Downloading Serena Release Automation ... 49

Database Installation .. 50

Installing Oracle ... 50

Installing MySQL ... 51

Installing Microsoft SQL Server ... 52

Server Installation ... 53

Interactive Server Installation (Windows, Linux/UNIX (AIX, Solaris) 53

(Windows) Server Install: Destination Folder Panel 54

4 Serena® Orchestrated Ops

(Windows) Server Install: Administrator Details Panel.................................... 55

Server Installation (Other UNIX Platforms) ... 55

Silent Mode Server Installation ... 56

(Windows) Server Silent Installation.. 56

(Windows) Server Silent Install Options .. 56

(Windows) Server Silent Install: OptionsFile.txt Examples 58

(Linux/UNIX Platforms) Server Silent Install .. 60

(Linux/UNIX) Server Silent Install Options ... 60

(Linux/UNIX) Server Silent Install: optionsFile.txt Examples 63

Agent Installation.. 64

Interactive Agent Installation (Windows, Linux/UNIX (AIX, Solaris, HP-UX) 65

Silent Mode Agent Installation ... 65

(Windows) Agent Silent Installation .. 65

(Windows) Agent Silent Install Options .. 66

(Windows) Agent Silent Install: OptionsFile.txt Example 67

(Linux/UNIX Platforms) Agent Silent Installation .. 68

(Linux/UNIX) Agent Silent Install Options... 68

(Linux/UNIX) Agent Silent Install: OptionsFile.txt Examples 70

Installing Agent Relays ... 70

Distributing Server Processing with Active/Active ... 73

Active/Active Server Installation .. 73

Connecting Agents to a Single "Endpoint" .. 74

Connecting Agents to a Series of Server "Endpoints" 74

SSL Configuration ... 75

Configuring SSL Unauthenticated Mode for HTTP Communications 76

Configuring Mutual Authentication ... 76

Property Settings for Mutual Authentication .. 76

Adding an Alias to an Agent.. 77

Adding an Alias to an Agent Relay ... 78

Mutual Authentication: Server and Agent(s) .. 78

Mutual Authentication: Server, Agent Relay, and Agent(s) 79

Serena Release Automation Guide 5

Running Serena Release Automation ... 82

Running the Server .. 82

Running an Agent ... 82

Running an Agent Relay .. 82

Accessing Serena Release Automation ... 83

Quick Start—helloWorld Deployment.. 83

helloWorld: Creating Components .. 84

helloWorld Deployment ... 84

helloWorld: A Note Before You Begin ... 84

helloWorld: Component Version ... 85

helloWorld: Component Process ... 87

helloWorld: Process Design ... 88

helloWorld: Application ... 93

helloWorld: Creating an Application ... 94

Adding the helloWorld Component to the Application 94

helloWorld: Adding an Environment to the Application 94

helloWorld: Adding a Process to the Application ... 96

Designing the Process Steps .. 96

Running the Application .. 98

Using Serena Release Automation... 101

Components .. 101

Creating Components ... 102

Importing/Exporting Components... 104

Exporting Components ... 104

Importing Components ... 104

Component Properties .. 105

Component Versions ... 107

Importing Versions Manually ... 107

Importing Versions Automatically ... 109

Component Version Statuses ... 109

Deleting Component Versions .. 109

6 Serena® Orchestrated Ops

Inactivating Component Versions ... 109

Component Change Logs... 109

Component Processes ... 109

Configuring Component Processes .. 110

Process Editor .. 111

Displaying the Process Editor ... 111

Using the Process Editor ... 113

Adding Process Steps .. 115

Connecting Process Steps .. 116

Process Properties.. 118

Switch Steps and Conditional Processes .. 119

Component Manual Tasks ... 121

Creating Component Manual Tasks .. 121

Using Component Manual Tasks ... 122

Post-Processes .. 122

Component Templates .. 122

Creating a Component Template ... 123

Importing/Exporting Templates.. 123

Exporting Templates .. 123

Importing Templates .. 124

Component Template Properties ... 124

Using Component Templates ... 126

Configuration Templates ... 127

Deleting and Deactivating Components ... 127

Resources ... 127

Resource Groups ... 128

Creating a Resource Group.. 128

Resource Roles .. 130

Role Properties ... 130

Agents .. 130

Remote Agent Installation ... 130

Serena Release Automation Guide 7

Managing Agents Remotely .. 132

Agent Pools ... 132

Creating an Agent Pool ... 132

Managing Agent Pools .. 133

Applications .. 133

Environments .. 134

Application Processes ... 134

Snapshots .. 134

Creating Applications ... 135

Adding Components to an Application ... 136

Importing/Exporting Applications ... 136

Exporting Applications ... 137

Importing Applications ... 137

Application Environments ... 138

Creating an Environment ... 139

Mapping Resources to an Environment ... 139

Environment Properties .. 140

Application Processes ... 141

Creating Application Processes .. 141

Application Process Steps ... 142

Application Process Step Details ... 142

Finish ... 142

Install Component ... 143

Uninstall Component .. 143

Rollback Component .. 144

Manual Application Task (Utility) .. 145

Application Manual Tasks ... 146

Creating Application Manual Tasks .. 146

Using Manual Tasks ... 146

Approval Process ... 147

Work Items ... 147

8 Serena® Orchestrated Ops

Snapshots .. 148

Creating Snapshots ... 148

Application Gates ... 149

Creating Gates ... 149

Structure of the default.xml File ... 151

Deployments ... 152

Scheduling Deployments ... 156

Reports .. 156

Deployment Reports ... 157

Deployment Detail Report .. 158

Deployment Detail Fields .. 158

Running the Deployment Detail Report ... 159

Report Samples: Deployment Detail ... 160

Deployment Count Report .. 161

Deployment Count fields .. 161

Running the Deployment Count Report ... 162

Report Samples: Deployment Count ... 164

Deployment Average Duration Report ... 165

Deployment Average Duration Fields .. 165

Running the Deployment Average Duration Report 165

Sample Reports: Deployment Average Duration 167

Deployment Total Duration Report .. 167

Deployment Total Duration Fields .. 168

Running the Deployment Total Duration Report.. 168

Sample Reports: Deployment Total Duration ... 170

Security Reports ... 170

Application Security Report ... 171

Application Security Fields ... 171

Component Security Report ... 171

Component Security Fields ... 171

Environment Security Report ... 172

Environment Security Fields .. 172

Serena Release Automation Guide 9

Resource Security Report .. 173

Resource Security Fields .. 173

Saving and Printing Reports ... 173

Saving Report Data .. 173

Saving Report Filters .. 174

Printing Reports .. 174

Administration ... 174

Serena Release Automation Security... 175

Setting up Security .. 175

Roles and Permissions .. 176

Default Roles .. 177

Creating and Editing Roles .. 177

Agent Roles... 178

Application Roles .. 178

Component Template Roles ... 179

Component Roles .. 179

Environment Roles ... 179

License Roles .. 180

Resource Roles ... 180

Default Permissions .. 180

Setting Default Permissions ... 181

Authorization Realms ... 182

Creating an LDAP Authorization Realm .. 182

Creating Authorization Groups .. 183

Authentication Realms .. 184

Creating an Authentication Realm .. 184

Creating an LDAP Authentication Realm ... 185

Authentication Realm Users ... 186

Importing LDAP Users .. 186

To Import LDAP Users ... 186

Tokens ... 186

10 Serena® Orchestrated Ops

User Interface Security .. 187

System Security ... 188

System Settings .. 189

Licenses ... 189

Adding a License .. 189

Adding Agents to a License.. 190

Modifying or Deleting a License.. 190

Logging ... 190

Network Relay .. 191

Notifications ... 191

Creating Notification Templates.. 194

Post-Processing Scripts .. 194

Preview Version Cleanup ... 195

Output Log.. 195

Locks .. 195

Managing Locks ... 195

Installing Plug-ins .. 196

Configuration ... 197

Application Configuration ... 198

Adding Application Configuration Properties .. 199

Modifying and Deleting Application Configuration Properties 199

Component Configuration ... 200

Environment Configuration .. 200

Inventory ... 201

Resources Inventory ... 201

Component Inventory ... 201

Environment Inventory .. 202

Reference.. 202

Basic Fields .. 203

File System (Basic) .. 204

File System (Versioned) .. 205

Serena Release Automation Guide 11

Serena Dimensions CM .. 205

Serena PVCS ... 206

Plug-ins .. 207

Creating Plug-ins ... 209

The plugin.xml File ... 209

<header> Element... 210

Plug-in Steps: <step-type> Element ... 211

Step Properties: <properties> Element ... 212

<command> Element .. 214

The <post-processing> Element ... 215

Upgrading Plug-ins ... 216

The info.xml File .. 217

Standard Plug-ins ... 217

Serena Release Automation Properties .. 217

Command Line Client (CLI) ... 220

Command Format .. 220

Commands.. 221

addActionToRoleForApplications ... 221

addActionToRoleForComponents ... 222

addActionToRoleForEnvironments... 222

addActionToRoleForResources .. 222

addActionToRoleForUI .. 223

addComponentToApplication ... 223

addGroupToRoleForApplication .. 223

addGroupToRoleForComponent .. 224

addGroupToRoleForEnvironment ... 224

addGroupToRoleForResource ... 225

addGroupToRoleForUI .. 225

addLicense ... 225

addNameConditionToGroup ... 226

12 Serena® Orchestrated Ops

addPropertyConditionToGroup .. 226

addResourceToGroup .. 227

addRoleToResource ... 227

addRoleToResourceWithProperties .. 227

addUserToGroup .. 228

addUserToRoleForApplication... 228

addUserToRoleForComponent .. 228

addUserToRoleForEnvironment .. 229

addUserToRoleForResource ... 229

addUserToRoleForUI... 230

addVersionFiles ... 230

addVersionStatus .. 231

createApplication .. 231

createApplicationProcess ... 231

createComponent .. 232

createComponentProcess .. 232

createDynamicResourceGroup .. 233

createEnvironment ... 233

createGroup .. 234

createMapping ... 234

createResourceGroup .. 234

createRoleForApplications .. 235

createRoleForComponents .. 235

createRoleForEnvironments ... 235

createRoleForResources ... 235

createRoleForUI ... 236

createSubresource ... 236

createUser ... 236

createVersion .. 237

Serena Release Automation Guide 13

deleteGroup .. 237

deleteResourceGroup .. 237

deleteResourceProperty ... 238

deleteUser ... 238

exportGroup .. 238

getApplication ... 239

getApplicationProcess .. 239

getApplicationProcessRequestStatus ... 239

getApplications ... 240

getComponent ... 240

getComponentProcess .. 240

getComponents ... 240

getComponentsInApplication ... 241

getEnvironment ... 241

getEnvironmentsInApplication .. 241

getMapping ... 241

getResource .. 242

getResourceGroup.. 242

getResourceGroups ... 242

getResourcesInGroup .. 243

getResources .. 243

getResourceProperty .. 243

getRoleForApplications.. 243

getRoleForComponents ... 244

getRoleForEnvironments ... 244

getRoleForResources .. 244

getRoleForUI .. 244

getUser .. 245

importGroup .. 245

14 Serena® Orchestrated Ops

importVersions ... 245

login .. 246

logout ... 246

removeActionFromRoleForApplications .. 246

removeActionFromRoleForComponents .. 247

removeActionFromRoleForEnvironments.. 247

removeActionFromRoleForResources ... 247

removeActionFromRoleForUI ... 248

removeGroupFromRoleForApplication ... 248

removeGroupFromRoleForComponent ... 248

removeGroupFromRoleForEnvironment .. 249

removeGroupFromRoleForResource .. 249

removeGroupFromRoleForUI ... 250

removeResourceFromGroup ... 250

removeRoleForApplications.. 250

removeRoleForComponents ... 251

removeRoleForEnvironments ... 251

removeRoleForResources .. 251

removeRoleForUI .. 251

removeRoleFromResource .. 252

removeUserFromGroup ... 252

removeUserFromRoleForApplication.. 252

removeUserFromRoleForComponent ... 253

removeUserFromRoleForEnvironment ... 253

removeUserFromRoleForResource .. 254

removeUserFromRoleForUI.. 254

repeatApplicationProcessRequest ... 254

requestApplicationProcess .. 255

setComponentEnvironmentProperty.. 255

Serena Release Automation Guide 15

setComponentProperty ... 255

setResourceProperty... 256

updateUser ... 256

16 Serena® Orchestrated Ops

Serena Release Automation
This documentation is designed to enhance your experience using Serena Release
Automation which automates the deployment of multi-tier, distributed applications and
their configuration settings. Using the product, you can automate your approval and
validation of code, ultimately speeding deployment of releases across the application
lifecycle. Serena's Release Automation will help to increase operations productivity and
business agility, even across multiple environments, and this documentation is intended
to help you utilized the product to best suit your needs.

About This Documentation
This documentation guides you through installing and using the Serena Release
Automation product and is intended for all users.

This documentation is available in PDF and HTML formats:

• The HTML Help is located online at: http://help.serena.com/oalm_help/4_5/sra/en/
help.html.

• The HTML Help can also be accessed from within the product's web-based, user
interface by clicking the Help button.

• The pdf is located on the Serena Documentation portal at:
http://support.serena.com/Case/CaseHome.aspx

You will need to log in using your customer account. If you do not have an account,
please contact your Serena Sales Representative.

Organization of this Documentation
The flow of this documentation covers the following high-level areas.

Section Description

Overview [page
18]

Provides an overview of the product's significant features and
describes its architecture.

Serena Release
Automation
Roadmap [page
42]

Provides a roadmap to Serena Release Automation productivity,
describes how to install the product, and contains a step-by-step
introductory tutorial.

Components [page
101]

Contains comprehensive chapters for Serena Release
Automation's core features, such as components, applications,
and resources.

Serena Release
Automation
Security [page
175]

Describes Serena Release Automation's security system and
explains how to configure product features.

Serena Release Automation Guide 17

http://help.serena.com/oalm_help/4_5/sra/en/help.html
http://help.serena.com/oalm_help/4_5/sra/en/help.html
http://support.serena.com/Case/CaseHome.aspx

Section Description

Reference [page
202]

Contains several reference-type chapters on topics like: the
command-line interface, product properties, writing plug-ins, as
well as others.

Product Support
The Serena Support portal, http://support.serena.com/Case/CaseHome.aspx, provides
information that can address any of your questions about the product. The portal enables
you to:

• review product FAQs

• download patches

• view release notes that contain last-minute product information

• review product availability and compatibility information

• access white papers and product demonstrations

Note: You need an account to log in to the Serena Support portal. If you do not
have an account, contact your Sales Representative.

Documentation Conventions
This book uses the following special conventions:

• Program listings, code fragments, and literal examples are presented in
this typeface.

• Product navigation instructions are provided like this:

Home > Components > [selected component] > Versions > [selected
version] > Add a Status [button]

This example, which explains how to add a status to a component version, means:
from the Serena Release Automation home page click the Components tab (which
displays the Components pane); select a component (which displays a pane with
information for the selected component); click the Versions tab (which displays a
pane with information about the selected version); and click the Add a Status button.

• User interface objects, such as field and button names, are displayed with initial
Capital Letters.

• Variable text in path names or user interface objects is displayed in italic text.

• Information you are supposed to enter is displayed in this format.

Overview
At its base, software deployment is a simple concept that sometimes gets obscured by
jargon. A deployment is the process of moving software (broadly defined) through various

Serena Release Automation

18 Serena® Orchestrated Ops

http://support.serena.com/Case/CaseHome.aspx

preproduction stages to final production. Typically, each stage represents a step of higher
criticality, such as quality assurance to production. Complexity arises from the sheer
volume of things deployed, the number and variety of deployment targets, constantly-
decreasing deployment cycles, and the ever-increasing rate of technological change. While
virtualization provides some relief to the process, it also—perhaps
paradoxically—increases the challenge with its exponential growth of deployment targets.

Serena Release Automation helps you meet the challenge by providing tools that improve
deployment speeds while simultaneously improving their reliability. Serena Release
Automation's release automation tools provide complete visibility into n-tiered
deployments, enabling you to model processes that orchestrate complex deployments
across every environment and approval gate. Serena Release Automation's drag-and-drop
design tools decrease design-time by making it easy to visualize the end-to-end
deployment process and develop the big picture—the What, How, and Where of the
deployment workflow:

• What: the deployable items—binaries, static content, middleware updates, database
changes and configurations, and anything else associated with the software—that
Serena Release Automation delivers to target destinations.

• How: refers to combining deployable items with processes to create components,
and designing applications that coordinate and orchestrate multi-component
deployments.

• Where: the target destination's hosts and environments—Serena Release
Automation can scale to any environment.

Figure 1. Deployment Process

In Serena Release Automation, deployable items are combined into logical groupings
called components. Components are deployed by component processes which consist of
user-configured steps, many taken from integrations with third-party tools called plug-ins.
Multi-component deployments are handled by user-assembled applications.

Serena Release Automation Guide 19

Serena Release Automation represents deployment targets by what it calls resources.
Resources—databases, servers, and so on—reside on hosts. Complex deployments can
contain numerous components that target multiple hosts. Deployments are managed by
agents residing on the hosts. Components can also remain independent of one another,
which enables incremental or targeted deployments. Of course, you can model your
components as you see fit—Serena Release Automation is flexible and works the way you
work.

Server
The Serena Release Automation server is a standalone server that provides Serena
Release Automation's core services such as the user interface, component and application
configuration tools, workflow engine, and security services, among others. Many services
are REST-based.

Serena Release Automation supports cross-network deployments with relay servers. Relay
servers enable network-to-network communications.

Agents
An agent is a lightweight process that runs on a host and communicates with the Serena
Release Automation server. Agents manage the resources that are the actual deployment
targets. Each machine participating in a deployment usually has an agent installed on it.
When not performing deployments, agents run in the background with minimal overhead
(see Resources [page 25]).

Repository
The Serena Release Automation-supplied artifact repository, CodeStation, provides secure
and tamper-proof storage. It tracks artifact versions as they change and maintains an
archive for each artifact. Associations between repository files and components are built-
in and automatic.

Security
In Serena Release Automation’s role-based security system, users are assigned roles, and
role-permissions are assigned to things such as projects, build configurations, and other
resources. For example, a developer may be permitted to build a project, but only view
non-project related material.

Components
Understanding how Serena Release Automation uses the term component is critical to
understanding Serena Release Automation. Components represent deployable items along
with user-defined processes that operate on them, usually by deploying them. Deployable
items–also called artifacts–can be files, images, databases, configuration materials, or
anything else associated with a software project. Components have versions which are
used to ensure that proper component instances get deployed.

Artifacts can come from a number of sources: file systems, build servers such as
AnthillPro, source version control systems, Maven repositories, as well as many others.
When you create a component, you identify the source and define how the artifacts will be
brought into Serena Release Automation. If the source is Subversion, for example, you
specify the Subversion repository containing the artifacts. Each component represents
artifacts from a single source.

Serena Release Automation

20 Serena® Orchestrated Ops

Component Processes

A component process is a series of user-defined steps that operate on a component's
artifacts. Each component has at least one process defined for it and can have several.

A component process can be as simple as a single step or contain numerous steps and
relationships; the switch step enables you to create conditional processes. For example,
you might take artifacts from a source–such as an AnthillPro project–and map the ones
that get deployed to an HTTP server into one component; those that get deployed to a
J2EE container to another; and those that get deployed to a database to yet another.
Another example, a single-component deployment might consist of two processes: the
first moves component files to a server on Friday night (a lengthy operation), while the
second deploys the files Saturday morning.

Figure 1. Process Editor with a Component Process containing a Switch Step

Serena Release Automation Guide 21

Component processes are created with Serena Release Automation's process editor. The
process editor is visual drag-and-drop editor that enables you to drag process steps onto
the design space and configure them immediately.

As you place additional steps, you visually define their relationships with one another.
Process steps are selected from a menu of standard steps that replace typical deployment
scripts and manual processes.

Serena Release Automation provides steps for several utility processes, such as inventory
management, and workflow control. Additional process steps are provided by plug-ins.
Plug-ins provide integration with common deployment tools and application servers, such
as WebSphere, Microsoft IIS, and many others.

Out-of-the-box, Serena Release Automation provides plug-ins for many common
processes, such as downloading and uploading artifacts, and retrieving environment
information. A component process can have steps from more than one plug-in. A
component process is defined for a specific component. A component can have more than
one process defined for it, but each component requires at least one process.

For example, deploying a J2EE EAR file to WebSphere server typically consists of the
following operations:

1. Transfer the EAR file to the target machine.

2. Stop the WebSphere server instance.

3. Invoke wsAdmin with deployment properties.

4. Start the WebSphere instance.

5. Verify that the deployment succeeded by accessing a specified URL.

Note: The WebSphere plug-in provides a configurable process step for each
operation.

A frequently used component process can be saved as a template and applied later to new
components.

Component processes are executed by Serena Release Automation agents running on
hosts. One instance of a component process is invoked for each resource mapped to a
component in the target environment.

Related Topics

• Resources [page 25]

Application Process

When you create an application, you identify the included components and define an
application process. Application processes, like component processes, are created with the
process editor. Serena Release Automation provides several common process steps,
otherwise application processes are assembled from processes defined for their associated
components.

Application processes can run manually, automatically on some trigger condition, or on a
user-defined schedule. When a component has several processes defined for it, the
application determines which ones are executed and in which order. For instance, an n-
tiered application might have a web tier, a middleware tier, and a database tier. And,

Serena Release Automation

22 Serena® Orchestrated Ops

continuing the example, the database tier must be updated before the other two, which
are then deployed concurrently. An application can orchestrate the entire process,
including putting servers on- and off-line for load-balancing as required.

When an application process executes, it interacts with a specific environment. An
environment is a collection of one or more resources. At least one environment must be
associated with the application before the process can be executed. Application processes
are environment agnostic; processes can be designed independently of any particular
environment. This enables a single application to interact with separate environments,
such as QA, or production. To use the same application process with multiple
environments (a typical scenario), you associate each environment with the application
and execute the process separately for each one.

In addition to deployments, several other common processes are available, such as
rolling-back deployments. Serena Release Automation tracks the history of each
component version, which enables application processes to restore environments to any
desired point.

Environments

An environment is a user-defined collection of resources that host an application.
Environments are typically modeled on some stage of the software project life cycle, such
as development, QA, or production. A resource is a deployment target, such as a
database or J2EE container. Resources are usually found on the same host where the
agent that manages them is located. A host can be a physical machine, virtual machine,
or be cloud-based.

Environments can have different topologies–for example: an environment can consist of a
single machine; be spread over several machines; or spread over clusters of machines.
Environments are application scoped. Although multi-tenant machines can be the target of
multiple applications, experience has shown that most IT organizations use application-
specific environments. Additionally, approvals are generally scoped to environments.

Serena Release Automation maintains an inventory of every artifact deployed to each
environment and tracks the differences between them.

Plug-ins

Plug-ins provide basic processing functions as well as integration with third-party tools.
Serena Release Automation ships with plug-ins for several common deployment
processes, and others are readily available for a wide variety of tools, such as middleware
tools, databases, servers, and other deployment targets.

Third-party tools exhibit wide and varied functions, of course. Plug-in integration is
achieved by breaking down a tool's functions into simple, discrete steps that invoke a
specific behavior. A plug-in step might invoke a tool, or invoke different functions in a
tool, such as extracting or inserting some type of data.

When you use plug-ins to create a component process, you can use steps from several
plug-ins and configure the steps as you go. For example, you might create a process
using a plug-in for a source control tool that deploys a component to a middleware server,
and another plug-in to configure a step that removes the component from the server.

A component process that contains a plug-in step requires an agent. Unless the agent
needs to interact with the host's file system or system processes, the agent does not have
to be on the same host as the target resource.

Serena Release Automation Guide 23

Serena Release Automation enables you to download and install numerous component
plug-ins. Serena does not charge any additional fees for plug-ins. The plug-in system is
open and extensible–plug-ins can be written in any language.

Component Versions and the CodeStation Repository

After defining a component's source and processes, you import its artifacts into Serena
Release Automation's artifact repository CodeStation. Artifacts can be imported
automatically or manually. By default, a complete copy of an artifact's content is imported
into CodeStation (the original artifacts are untouched). This provides several benefits,
such as tamper-proof storage, and the ability to review and validate artifacts with Serena
Release Automation's user interface. But if you have storage concerns or use a tool like
Maven, you can limit CodeStation to using references to the artifacts instead of actually
copying them.

Each time a component is imported, including the first time, it is versioned. Versions can
be assigned automatically by Serena Release Automation, applied manually, or come from
a build server. Every time a component's artifacts are modified and reimported, a new
version of the component is created. So a component might have several versions in
CodeStation and each version will be unique.

A version can be full or incremental. A full version contains all component artifacts; an
incremental version only contains artifacts modified since the previous version was
created.

Applications
An applications is the mechanism that initiate component deployments; they bring
together components with their deployment targets, and orchestrate multi-component
deployments.

Snapshots
A snapshot is a collection of specific component versions, usually versions that are known
to work together. Typically, a snapshot is generated in an uncontrolled
environment–meaning one without— approvals. When a snapshot is created, a picture of
the application's current state is captured. As an application moves through different
environments, snapshots can ensure that proper component versions are used.

Snapshots help manage complex deployments—deployments with multiple tiers and
development teams. For example, after testing and confirming that team A's component
works with teams B's, a snapshot can be taken. Then, as development progresses,
additional snapshots can be taken and used to model the effort and drive the entire
deployment, coordinating versions, configurations, and processes.

Agents
An agent is a process that runs on target host and communicates with the Serena Release
Automation server. Agents are integral to Serena Release Automation's client/server
architecture. Agents perform the actual work of deploying components and so relieves the
server from the task, making large deployments involving thousands of targets possible.

Typically, an agent runs on the same host where the resources it handles are located. A
single agent can handle all resources on its host. If a host has several resources, an agent
process is invoked separately for each resource. For example, a test environment might

Serena Release Automation

24 Serena® Orchestrated Ops

contain a single web server, a single middleware server, and a single database server all
running on the same host (machine). A deployment to this environment might have one
agent and three separate resources.

Depending on the number of hosts in an environment, a deployment might require a large
number of agents. Agents are unobtrusive and secure. Agent communications use SSL
encryption and mutual key-based authentication. For added security, agents do not listen
to ports, but open direct connections to the server instead.

Resources
A resource is a user-defined construct based on Serena Release Automation's architectural
model. Resources aid bookkeeping; inventory is tracked for resources. Resources are
created and managed through the user interface.

A resource represents a deployment target–a physical machine, virtual machine,
database, J2EE container, and so on. Components are deployed to resources by agents
(which are physical processes). Resources generally reside on the same host where its
managing agent runs. A host can have more than one resource. If an agent is configured
to handle multiple resources, a separate agent process is invoked for each one.

A resource can represent a physical machine, which is the simplest configuration, or a
specific target on a machine, such as a database or server. So a host (machine) can have
several resources represented on it. In addition, a resource can represent a process
distributed over several physical or virtual machines. Finally, environments consist of
resources.

To perform a deployment, at least one resource must be defined and (usually) at least
one agent. ("Usually" because trivial deployments can be done without an agent.)
Typically, each host in a participating environment has an agent running on it to handle
the resources located there.

A proxy resource is a resource effected by an agent on a host other than the one where
the resource is located. If an agent does not require direct interaction with the file system
or with process management on the host, a proxy resource can be used. When a
deployment needs to interact with a service exposed on the network (a database or J2EE
server, for instance), the interaction can happen from any machine that has access to the
networked service.

Resource Groups
A resource group is a logical collection of resources. Resource groups enable collections of
resources to be easily reused. Resource groups can manage multi-tenant scenarios, for
example, in which several machines share the same resources.

Architecture
Serena Release Automation architecture consists of a service tier and a data tier. The
service tier has a central server that provides a web server front-end and core services,
such as workflow, agent management, deployment, inventory, security, as well as others.
A service can be thought of as a self-contained mechanism for hosting a piece of business
logic. Services can be consumed by clients\agents or other services. Deployments are
orchestrated by the server and performed by agents distributed throughout the network.
Most clients use browsers to communicate with the web server via HTTP(S). Most server-

Serena Release Automation Guide 25

agent communication is done via JMS (discussed below) but HTTP(S) is also used as
required.

Serena Release Automation uses stateless communications for server-agent
communications (JMS-based) as well as client-web service communications. Stateless, as
used here, means the server retains little session information between requests and each
request contains all the information required to handle it. The server sets-up listening
sockets and listens for agents, relays, and users (clients). For added security, agents do
not listen on ports. Agents send requests when they are ready to make the transition to a
new state.

Server-agent communication is built around transferring—deploying—components.
Components can contain any business-meaningful content, such as environment
information, configuration data, source, static files, or anything else associated with a
software project. Because JMS connections are persistent and not based on a request-
response protocol, Serena Release Automation does not have to continually open and
close ports, which enables the server to communicate with agents at any time while
remaining secure and scalable.

Many Serena Release Automation services are REST-type (representational state
transfer). REST-style services are web services that focus on transferring resources over
HTTP. A resource can be any business-meaningful piece of data. Resources are
transferred by a self-describing format such as XML or JSON (JavaScript Object Notation).
The XML and JSON representations typically model resource states at the time of agent/
client requests. REST-style services achieve statelessness by ensuring that requests
include all the data needed by the server to make a coherent response.

The data tier's relational database stores configuration and run-time data. The data tier's
file store—CodeStation—contains log files, artifacts, and other non-structured data
objects. Reporting tools can connect directly to the relational database.

Architecture

26 Serena® Orchestrated Ops

Figure 1. Architectural Overview

Service Tier
The Serena Release Automation server provides a variety of services, such as: the user
interface, component and application configuration tools, workflow engine, and security
services among others. The REST-based user interface provides the web-based front-end
that is used to create components and fashion workflows; request processes, and manage
security and resources, among other things.

When a workflow is requested, many services are used to fulfill the request.

Serena Release Automation Guide 27

Figure 1. Services and Process Workflow

Workflow requests are initiated with the user interface, either the web-based application
or the CLI (command line interface).

Table 1. Services Table

Architecture

28 Serena® Orchestrated Ops

Service Description

User
Interface

Used to create components and fashion workflows, request processes
and manage security and resources, among other things. REST-based.

Workflow
Engine

Manages workflows—application and component processes. Calls the
agent responsible for performing the workflow's current plug-in step.
When the workflow is finished, alerts the notification and inventory
services. Called by the deploy service. REST-based.

Agent Tracks installed agents and routes plug-in commands to affected
agents. Commands come from plug-in steps. Invoked by the workflow
service. REST-based.

Work Item Operates in tandem with the approval service; provides approver alerts
and enables approvers to accept or reject workflows. If a scheduled
workflow remains unapproved at run-time, the job fails automatically.
REST-based.

Plug-in
Manager

Serena Release Automation can interact with virtually any system
through its extensible plug-in system; plug-ins provide functions by
breaking-down tool features into automated steps. Plug-ins can be
configured at design- and run-time. When a plug-in step executes, the
controlling agent invokes its run-time process to execute the step.

When a new component version is available, the agent compares the
current component version and downloads and only new or changed
artifacts.

Event The event service is ubiquitous; it alerts other services as various
trigger conditions occur.

Deployment
Service

Manages deployments. When a deployment process is requested,
invokes the workflow engine to perform the process. Works in tandem
with the security service to ensure users have required permissions.
REST-based.

Notification
Manager

Notifies users about the status of deployments; notifications are sent to
approvers if the system is configured with an email server and the user
has an email address. Invoked by the workflow manager. REST-based.

Inventory
Manager

When a workflow finishes, the inventory manager updates affected
inventory records. Serena Release Automation maintains an inventory of
every deployed artifact in every environment, which provides complete
visibility across environments. REST-type service.

Approval
Engine

Enables creation of approval-requiring jobs and approver roles. Works in
tandem with the work item service to ensure required approvals are
made before scheduled jobs. REST-based.

Serena Release Automation Guide 29

Service Description

Security Controls what users can do and see; maps to organizational structures
by teams, roles, activities, etc. REST-based.

Calendar Used to schedule processes to being at some future point; works in
tandem with the approval and work item services. REST-based.

CodeStation Handles versioning of artifacts; agents invoke it when downloading
component versions. REST-based.

Clients
Web browsers are Serena Release Automation's most common client (agents are
discussed in another topic, see the Agents [page 130] section), but other clients can be
developed to access the web services. Clients are deployed locally (on the same LAN as
the Serena Release Automation server) or remotely, and communicate with the server via
HTTP or HTTPS. The Serena Release Automation browser-based GUI is a Rich Internet
Application (RIA) that maintains much of its functionality in the browser. Clients interact
with RESTful (representational state transfer) services on the server as needed. A
command line client is available that provides most of features found in the browser-
based GUI. The command line client is also built on top of RESTful services.

Relational Database
Your relational database is a critical element for performance and disaster recovery. The
provided Derby database, while sufficient for proof-of-concept work, is generally
insufficient for the enterprise. Full-featured databases like Oracle, MS SQL Server, or
MySQL are better options. Ideally, the database—whichever is used—should be configured
for high-availability, high-performance, and be backed-up regularly.

10-20 GB of database storage should be sufficient for most environments. For Oracle, an
architecture based on Oracle RAC is recommended; for Microsoft SQL Server, a clustered
configuration is preferred; for MySQL, utilize MySQL Cluster.

File Storage—Codestation
The data tier also provides log file and Codestation artifact storage. Artifacts represent
deployable items such as files, images, databases, configuration materials, or anything
else associated with a software project. By default, these are stored in the var
subdirectory in the Serena Release Automation server installation directory. In an
enterprise environment, the default installation might not be ideal, see Relocating
Codestation [page 31] for a discussion about enterprise options.

Serena Release Automation's secure and tamper-proof artifact repository ensures that
deployed components are identical to those tested in preproduction environments.
Without the repository, artifacts would have to be pulled from network shares or some
other system, increasing both security risks and the potential for error.

The artifact repository uses content addressable storage to maximize efficiency while
minimizing disk use. The repository tracks file versions and maintains a complete history
for all components. Maximizing efficiency is important, since the artifact repository stores

Architecture

30 Serena® Orchestrated Ops

files that are much larger than source files. Association of files with Components is built
into the system. Without any configuration, each Component gets its own area of the
repository for its files. There is no chance of confusion or mix-up of files to Components.
And, each Component Package is mapped to a specific set of files and versions
corresponding to the Component.

The artifact repository comes with a client application that provides remote access to the
repository. Using the client, the user can add/modify files, create Packages, retrieve files,
as well as view the history of changes. The client application provides a file transfer
capability that can be used to deliver files to target servers during deployments. This
built-in transfer mechanism verifies the integrity of all transferred files against their
expected cryptographic signatures, thus guaranteeing that files have not been corrupted
during transmission or tampered with during storage. In addition to the client application,
the artifact repository exposes REST-based web services. These services are used to build
integrations between build systems such as AnthillPro and Serena Release Automation.
Such integrations automatically place the artifacts produced by the build process in the
artifact repository, thus making the artifacts available for deployment.

Relocating Codestation
By default, the data tier's log files and Codestation artifacts are stored in the var
subdirectory within the Serena Release Automation server directory. Ideally, this data
should be stored on robust network storage that is regularly synchronized with an off-site
disaster recovery facility. In addition, the Serena Release Automation server should have
a fast network connection to storage (agents do not need access to the storage location).
In Unix environments, you can use symbolic links from the var subdirectory to network
storage. On Windows platforms there are several options for redirecting logs and artifacts,
including mklink (supported in Windows 7 and later).

If you want to relocate Codestation, relocate both the var directory as well as the
\logs\store directory. A good rule-of-thumb for determining Codestation storage
requirements is: average artifact size * number of versions imported per day *
average number of days before cleanup

Distributed teams should also take advantage of Serena Release Automation location-
specific Codestation proxies to improve performance and lower WAN usage.

Data Center Configuration
Installation recommendations.

Cold Standby
Serena Release Automation employs the cold standby HA strategy for the application tier.
When the primary system fails, the cold standby is brought online and promoted to
primary server. Once online, the standby reestablishes connections with all agents,
performs recovery, and proceeds with any queued processes. Because the most intense
work is handed-off to agents, a high performance configuration should not have an agent
installed on the same hardware as the main server.

The Serena Release Automation server aggressively utilizes threading and takes
advantage of any additional CPU cores assigned to it. A small to midrange server with 2-4
multi-core CPUs is ideal, but, because it is relatively easy to move an existing Serena
Release Automation server installation to a new machine, starting small and scaling as

Serena Release Automation Guide 31

needed is a very legitimate strategy. The memory available to the application tier should
also be increased from the default 256 MB to something on the order of 1 GB.

Platform Considerations
Serena Release Automation agents are platform agnostic, and can be installed on
anything that provides a Java 1.6.0 JDK or later. The server process is also platform
agnostic. Our customer base includes large Serena Release Automation installations on
Windows, Solaris, AIX, HP-UX, other UNIX flavors and various Linux platforms, all running
successfully.

We have seen somewhat better performance from Unix and Linux operating systems, but
recommend installing on the platform with which you are most familiar and comfortable.

Recommended Server Installation

• Two server-class machines: Serena recommends two machines for the server: a
primary machine and a standby for fail-over. In addition, the database should be
hosted on a separate machine.

• Separate machine for the database

• Processor: 2-4 CPUs, 2+ cores for each

• RAM: 8 GB

• Storage: Individual requirements depend on usage, retention policies, and
application types. In general, the larger number of artifacts kept in Serena Release
Automation's artifact repository (CodeStation), the more storage needed.

• Network: Gigabit (1000) Ethernet with low-latency to the database.

Agent Minimum Requirements

Designed to be minimally intrusive, agents can be installed on machines that require
64-256 MB of memory and 100 MB of disk space. Additional requirements are determined
by the processes the agent will run. Agents should be installed on separate machines. For
evaluation purposes, a good option is to install an agent on a virtual machine.

Typical Data Center Configurations
Most organizations configure the data tier with network storage and a clustered database.
The service tier performs best when it's on a dedicated, stable, multi-core machine with a
fast connection to the data tier. A standby machine should be maintained and kept ready
in case the primary server goes down.

Architecture

32 Serena® Orchestrated Ops

Figure 1. Single Data Center Configuration

There are no remote agents or agent relays in this configuration.

Serena Release Automation Guide 33

Figure 2. Multiple Data Centers

Agents
Agents play a central role in the Serena Release Automation architecture. An agent is a
lightweight process that runs on a deployment-target host and communicates with the
Serena Release Automation server. Agents perform the actual work of deployment which
relieves the server from the task. All processes—packaging, configuration, deployments,
and so on—requested by the Serena Release Automation server are executed on
hardware assigned to agents. Once an installed agent has been started, the agent opens a
socket connection to the Serena Release Automation server. Communication between
server and agents uses a JMS-based (Java Message Service) protocol and can be secured
using SSL, with optional mutual key-based authentication for each end-point. This
communication protocol is stateless and resilient to network outages (the benefits of
statelessness are discussed below).

While we characterize an agent as a single process, technically an agent consists of a
worker process and a monitor process. The worker is a multi-threaded process that
performs the actual deployment work after receiving commands from the server. Work
commands come from plug-in steps which provide seamless integration with many third-
party tools. The monitor is a service that manages the worker process–starting and
stopping, handling restarts, upgrades, and security, for example. Agents are rarely
upgraded because their functionality is derived from plug-ins, which can be upgraded at
will. Once an agent is installed, it can be managed from the Serena Release Automation
web application.

Architecture

34 Serena® Orchestrated Ops

Figure 1. Agent Processes

Agents are an important part of Serena Release Automation's scalability. By adding more
agents, the throughput and capacity of the system increases almost exponentially and so
can scale to fit even the largest enterprise.

Server-Agent Communication
Most agent communication is done with JMS, but some agent activities—posting logs,
transmitting test results, or posting files to Codestation, for example—use the web tier via
HTTP(s) as needed. The JMS channel is Serena Release Automation's primary control
channel; it's the channel the server uses to send agent commands. By default the server
listens on only three ports: port 7918 for JMS, 8080 for HTTP, 8443 for HTTPS.

The agent monitor service uses JMS for all server communications and for sending
commands, such as "run step," to the worker process. The worker process uses JMS for
system communications, and HTTP REST services when performing plug-in steps or
retrieving information from the server.

Stateless server-agent communication provides significant benefits to performance,
security, availability, and disaster recovery. Because each agent request is self-contained,
a transaction consists of independent message which can be synchronized to secondary
storage as it occurs. Either endpoint–server or agent∇can be taken down and brought
back up without repercussion (other than lost time). If communications fail mid-
transaction, no messages are lost. Once reconnected, the server and agent automatically
determine which messages got through and what work was successfully completed. After
an outage, the system synchronizes the endpoints and recovers affected processes. The

Serena Release Automation Guide 35

results of any work performed by an agent during the outage are communicated to the
server.

Figure 1. Stateless Communication

In the Server-Agent Communication [page 35] figure, the arrow represents the direction
in which communication was established, but the flow can be in both directions with JMS.

Remote Agents: Crossing Network Boundaries and
Firewalls
Serena Release Automation supports remote agents cross-network deployments. As long
as there is at least a low bandwidth WAN connection between the server and remote
agents, the Serena Release Automation server can send work to agents located in other
geographic locations. To aid performance and ease maintenance, Serena Release
Automation uses agent relays to communicate with remote agents. An agent relay
requires that only a single machine in the remote network contact the server. Other
remote agents communicate with the server by using the agent relay. All agent-server
communication from the remote network goes through the relay. Agent relays can be
configured as CodeStation proxies in order to optimize the transfer of large objects.

The following, a simple artifact move, illustrates the mechanics of remote
communications:

1. A remote agent starts and establishes a connection to the agent relay via JMS,
which, in turn, alerts the Serena Release Automation server via JMS that the remote
agent is online.

2. The server sends, say, an artifact download command to the relay via JMS, and the
relay delivers the message to the remote agent (also via JMS).

3. The server locates the artifacts, and then:

a. Uploads the artifacts to the relay over HTTP(s), which begins streaming them
directly to the agent over the server-relay HTTP(s) connection.

b. Once the remote agent completes the work, it informs the server via JMS.

Architecture

36 Serena® Orchestrated Ops

Figure 1. Crossing Network Boundaries

By default, agent relays open the connection to the Serena Release Automation server,
but the direction can be reversed if your firewall requires it. Remote agents open
connections to the agent relay.

In configurations with relay agents, agents local to the Serena Release Automation server
continue to use direct communications.

Agent Security
Serena Release Automation agents employ user impersonation when required to perform
tasks for which they would not otherwise have permission. To run a database update
script, for example, an agent might need to be the "oracle" user; but to update the
application, the agent might need to be the "websphere" user. By using impersonation,
the same agent can run the script and update the application, which enables you to
combine these steps into a single process. For information about user impersonation, see
the User Impersonation [page 37] section.

User Impersonation
Serena Release Automation can use user impersonation when an agent must execute a
command for which it might not otherwise have permission, or when a specific user must
be employed for a given process. You implement impersonation when you configure a
component's plug-in process step.

• On UNIX/Linux systems, the su/sudo commands are used to impersonate users, see
User Impersonation on UNIX/Linux Using sudo (or su) [page 38].

• On Windows, Serena Release Automation provides a utility program to handle
impersonation, see Impersonation on Windows Systems [page 38].

Serena Release Automation Guide 37

User Impersonation on UNIX/Linux Using sudo (or su)

For agents running on UNIX/Linux platforms, when you configure a process step you can
provide the agent(s) with the user impersonation capability. When a process step that is
impersonation-configured runs, the sudo (or su) command runs the step as the
impersonated user.

Process steps can be considered individual shells; the sudo (or su) command enables a
user to start a shell as another user.

Note: Each step that needs user impersonation must be configured
independently. For more information about creating process steps, see Process
Editor [page 111].

To configure impersonation using sudo:

1. Supply the username required by the target host.

2. Before sudo can be used:

a. Password Required. Impersonation privileges must be defined in the /etc/
sudoers file along with grant priviledges to run scripts from the agent .temp
folder. For example:

User1<>ALL=(User2)/home/User1/agent/var/temp/*

Grants User1 the rights to impersonate User2 to run plug-in steps as User2.

Defaults:X!requiretty
X ALL=(Y)

where X and Y are user names, and user X can run any command as user Y.

b. No Password Required. Impersonation privileges must be defined in the /etc/
sudoers file. For example:

Defaults:X!requiretty
X ALL=(Y) NOPASSWD: ALL

where X and Y are user names, and user X can run any command as user Y
without supplying a password.

When you create a process step, the sudo option is available for you to select. The sudo
option is activated by default for plug-in steps. When the sudo check box is unchecked,
the su option is active. However, the su option only applies to agents starting as root.
Otherwise, su has no effect on the step or process. su can be used without configuring the
sudoers file.

su and sudo maintain a record in the system logs of all of their activity.

For more information about su/sudo see the UNIX/Linux documentation.

Impersonation on Windows Systems

For agents running on Windows platforms, Serena Release Automation provides a
program that handles impersonation.

Architecture

38 Serena® Orchestrated Ops

You implement impersonation for Windows-based agents the same way you do for UNIX-
or Linux-based agents:

When you configure a process step, you specify the local user credentials—user name and
password—that will be used when the step is processed.

For impersonation purposes, a local user is:

• one whose user name and password are stored on the target computer

• who is part of the administration group

• has, at a minimum, the following privileges:

SE_INCREASE_QUOTA_NAME (adjust memory quotas for a process)
SE_ASSIGNPRIMARYTOKEN_NAME (replace a process-level token)
SE_INTERACTIVE_LOGON_NAME (local logon)

Impersonating the LocalSystem Account

You can also impersonate the Windows LocalSystem account. The LocalSystem account is
installed on every Windows machine and is the equivalent of the root user on UNIX/Linux.
It is guaranteed to have the privileges listed above.

Note: For Windows-based agents the sudo option is ignored if selected.

SSL Mutual Key-based Authentication
SSL (Secure Socket Layer) technology enables clients and servers to communicate
securely by encrypting all communications. Data are encrypted before being sent and
decrypted by the recipient—communications cannot be deciphered or modified by third-
parties.

SSL technology can be used in several modes. In unauthenticated mode, communication
is encrypted/decrypted but users do not have to authenticate or verify their credentials.
By default Serena Release Automation uses this mode for its JMS-based server/agent
communication. By default, JMS-based communication uses port 7918.

SSL unauthenticated mode can also be used for HTTP communication. You can implement
this mode for HTTP during server/agent installation, or activate it afterward. See SSL
Configuration [page 75].

In mutual authentication mode, communications are encrypted as usual, but users are
also required to authenticate themselves by providing digital certificates. A digital
certificate is a cryptographically signed document intended to assure others as to the
identity of the certificate's owner. Serena Release Automation certificates are self-signed.

When mutual authentication mode is active, Serena Release Automation uses it for JMS-
based server/agent communication. In this mode, the Serena Release Automation server
provides a digital certificate to each agent, and each agent provides one to the server.
This mode can be implemented during server/agent installation, or activated afterward.
See SSL Configuration [page 75] for information about activating this mode and
exchanging certificates between the server and agents.

Serena Release Automation Guide 39

Unauthenticated mode for HTTP and mutual authentication mode for JMS are optional;
you can implement one without implementing the other, or implement both.

Getting Started
This documentation contains the following important information you will need to get you
started with Serena Release Automation:

• Single Sign On (SSO) with Serena Business Manager (SBM) [page 40]

• Serena Release Automation Roadmap [page 42]

• Installing Servers and Agents [page 46]

• Quick Start—helloWorld Deployment [page 83]

Single Sign On (SSO) with Serena Business
Manager (SBM)

Single Sign On (SSO) refers to Serena-installed software that enables a user to log in to a
Web-based component of SBM and be recognized on subsequent accesses to that
component or other Web-based components of SBM. This software also provides the
ability for security tokens to be used in an orchestration, allowing Web services to be
called without requiring the user to provide credentials at inconvenient times. For more
information, see Integrating with Serena Business Manager using SSO [page 40].

Integrating with Serena Business Manager using SSO
To configure Serena Release Automation for Single Sign On (SSO), you must complete the
following:

1. Install and configure Serena Business Manager (SBM), see SBM Installation and
Configuration Guide.

2. Install Serena Release Automation with Serena Common Tomcat, see Installing
Servers and Agents [page 46]

3. Configure Tomcat for SSO, see Configuring Tomcat for SSO [page 40]

Configuring Tomcat for SSO
You must have the Serena Release Automation server installed on the same machine as
the Serena Common Tomcat.

1. On the Serena Release Automation server, stop the Common Tools Service.

2. Go to the Serena\common\tomcat\6.0\alfssogatekeeper\conf directory.

3. Modify the file gatekeeper-core-config.xml changing the following parameters:

<parameter name="SecurityTokenService"
Type="xsd:anyURI">HTTP://<host>:<port>/TokenService/services/
Trust<parameter>

Getting Started

40 Serena® Orchestrated Ops

<parameter name="SecurityTokenServiceExternal"
Type="xsd:anyURI">HTTP://<host<:port>/TokenService/services/
Trust</parameter>

<parameter name="FederationServerURL"
Type="xsd:anyURI">HTTP://<host>:port>/ALFSSOLogin/login</parameter>

4. Modify the gatekeeper-services-config.xml file as follows:

- <GatekeeperProtectionControl> - <ProtectedURIs>
...
<URIMatcher requestURI="/serena_ra/*" />
...
</ProtectedURIs>

5. Go to the directory: \Serena\common\tomcat\6.0\webapps\serena_ra\WEB-INF\

6. In the web.xml file, enable the SSO filters by uncommenting the Serena SSO
Gatekeeper Filter Configuration section:

- <filter>
<filter-name>ALFSSOGatekeeperFilter</filter-name>
<filter-class>org.eclipse.alf.security.sso.server.gatekeeper.filterloader.

GatekeeperFilterLoader</filter-class>
- <init-param>

<param-name>gatekeeper.enabled</param-name>
<param-value>true</param-value>
</init-param>

- <init-param>
<param-name>gatekeeper.config.filename</param-name>
<param-value>${catalina.home}/alfssogatekeeper/conf/

gatekeeper-services-config.xml</param-value>
</init-param>

- <init-param>
<param-name>gatekeeper.lib.dir</param-name>
<param-value>${catalina.home}/alfssogatekeeper/lib</param-value>
</init-param>

- <init-param>
<param-name>gatekeeper.root.dir</param-name>
<param-value>${catalina.home}/alfssogatekeeper</param-value>
</init-param>

- <init-param>
<param-name>gatekeeper.log4j.use-repo-selector</param-name>
<param-value>true</param-value>
</init-param>

- <init-param>
<param-name>gatekeeper.log4j.create-new-repo</param-name>
<param-value>true</param-value>
</init-param>

- <init-param>
<param-name>gatekeeper.log4j.properties.filename</param-name>
<param-value>${catalina.home}/alfssogatekeeper/conf/log4j.properties

</param-value>

Serena Release Automation Guide 41

</init-param>
</filter>

- <filter-mapping>
<filter-name>ALFSSOGatekeeperFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

7. Run Common Tools and verify the following URL:
http://<host>:<CT_port>/serena_ra/, where CT_port is the Common Tools http
port. The SBM Single Sign-On page should display.

8. Enter your Username and Password to access Serena Release Automation.

See also, Single Sign Out [page 42].

Single Sign Out
When you use Single Sign On (SSO), single sign out will work correctly as long as you
have the Serena Release Automation server and the SSO server both configured to use
the same host. For more information, see Single Sign On (SSO) with Serena Business
Manager (SBM) [page 40].

Serena Release Automation Roadmap
This section provides information that will help you quickly become familiar with Serena
Release Automation, starting with installation and configuration. Then, descriptions of how
to create components and define applications to deploy them, and finally how to perform
deployments. The following topics should be reviewed in order:

• Creating components, see Creating a Component [page 43]

• Creating applications, see Creating an Application [page 44]

• Deploying components, see Deploy the Component [page 45]

Installing Serena Release Automation
A basic configuration consists of a server, a database, and at least one agent. In
production environments, all three should be installed on separate machines.

The following table summarizes basic installation steps. Related topics are listed below the
table.

Installation Steps table

Step Description

1. Review
installation
recommendations

Requirements and recommendations, including performance
recommendations, are provided.

Getting Started

42 Serena® Orchestrated Ops

Step Description

2. Download
Serena Release
Automation
installation files

Download the server, agent, agent relay, and CLI client (command
line interface) installation packages. Installation files can be
downloaded from the Serena Release Automation support portal
http://support.serena.com/Case/CaseHome.aspx. If you are
installing an evaluation version, the license is included with the
downloaded files. For evaluations, the agent relay (used to
communicate with remote networks) and the CLI client can be
skipped. At a minimum, an installation must have the server, a
database, and at least one agent.

3. Install the
database

Create an empty database for Serena Release Automation. Serena
Release Automation supports Oracle, MySQL, and Microsoft SQL
Server. For installation information, see Database Installation
[page 50].

Note: The installation package includes a lightweight
database—Derby—that can be used for evaluation
purposes.

4. Install the
server

For installation information, see Server Installation [page 53]. You
will need to supply values for the IP address, ports for HTTP
communication (secured and unsecured), port for agent
communication, and URL. The installation program provides
default values for many parameters. The properties set during
installation are recorded in the installed.properties file located
in the server_install/conf/server/ directory. If you intend to
turn on SSL, see SSL Configuration [page 75].

5. Install agents Agents are installed on target machines and communicate with the
server. When installing an agent, you supply several values
defined during server installation. See Agent Installation [page 64]
for instructions about installing agents. An agent requires various
access privileges for the machine where it is installed, which are
described in that section.

6. Confirm
installation

Start the server and agents. For information about running the
product, see Running Serena Release Automation [page 82]. To
determine if the agent is in communication with the server, display
the web application's Resource pane. A value of Online in the
agent's Status field means the agent is successfully connected.

Creating a Component
Components are the centerpiece of Serena Release Automation's deployment engine.
Components associate items that will be deployed—artifacts—with processes that will
deploy them. The following table summarizes the basic steps performed to create
components. Related topics are listed below the table.

Serena Release Automation Guide 43

http://support.serena.com/Case/CaseHome.aspx

Component Creation Steps table

Step Description

1. Define
source
configuration

Define the source type and identify the artifacts associated with the
component. The source type can be any or nearly any associated with a
software project. Once defined, all artifacts must be of the defined
type, see Creating Components [page 102].

2. Create
component
version

Create the initial component version by importing artifacts into the
artifact repository, CodeStation. Versions can be imported manually or
automatically. Version imports can be full (all artifacts are imported) or
incremental (only changed artifacts are imported). Serena Release
Automation tracks all artifact changes which enables you to rollback
components or deploy multiple versions of the same one.

3. Create
component
process

Use the process design editor to create a process for the component.
Component processes consist of user-configured steps that operate on
the component, usually by deploying it. The available steps are
provided by installed plug-ins. As shipped Serena Release Automation
provides plug-ins for many common functions. Numerous other plug-
ins are available from Serena—http://support.serena.com.

Related topics:

• How to create manual tasks, see Component Manual Tasks [page 121]

• How to install plug-ins, see Installing Plug-ins [page 196]

• How to create and use templates, see Creating a Component Template [page 123]

• How to import component templates, see Importing Templates [page 124]

Creating an Application
Applications associate components with the agents that will manage them, and define
processes to perform deployments.

The following table summarizes the steps performed to create applications.

Application Creation Steps table

Step Description

1. Create an
application
and identify
its
components.

After defining the application, identify the components it will manage.
Associating a component makes its processes and properties available
to the application. An application can have any number of components
associated with it.

Getting Started

44 Serena® Orchestrated Ops

http://support.serena.com

Step Description

2. Create an
environment

Define an environment and use it to map an agent to component(s).
Mapping means assigning an agent to manage the component. Each
component can be mapped to the same agent, a different one, or some
combination. An application can have more than one environment
defined for it.

3. Create an
application
process

Use the process design editor to create a process. Application processes
are created with the same editor used to create the component
process, but uses a different toolkit of process steps. Previously defined
component processes can be incorporated into the process.

Related topics:

• Serena Release Automation Properties [page 217]

• Snapshots [page 148]

• Importing/Exporting Applications [page 136]

Deploy the Component
Components are deployed by application processes. The following table summarizes the
steps performed to run an application process. For more information, see Deployments
[page 152].

Deployment Steps table

Step Description

1. Select
environment

Application processes are run at the environment level; you run a
process for a particular environment. Selecting an environment
automatically selects its agent(s). All processes defined for the
application are available.

2. Run
processs

You run a process by selecting it for a given environment and specifying
certain other parameters. Processes can also be Command Line Client
(CLI) [page 220], or Scheduling Deployments [page 156].

3. Check
results

When a process is started, the Application Process Request pane
displays information about the application's status and provides links to
logs and the application manifest. If an approval or manual task was
used, this pane enables affected users to respond.

Related topics:

• Creating Notification Templates [page 194]

• Configuring Mutual Authentication [page 76]

• Application Gates [page 149]

Serena Release Automation Guide 45

Other Topics

The following list provides links to additional topics.

• Serena Release Automation Security [page 175]

• Reports [page 156]

• Command Line Client (CLI) [page 220]

• Plug-ins [page 207]

• Adding Agents to a License [page 190]

Installing Servers and Agents
A Serena Release Automation installation consists of the Serena Release Automation
server (with a supporting database), and at least one agent. Typically, the server,
database, and agents are installed on separate machines, although for a simple evaluation
they can all be installed on the same machine. In addition, prior to or as part of the server
installation, Java 1.6 or higher must be installed on all server machines.

Note: For evaluation purposes, the supplied Derby database should be
adequate and can be installed on the machine where the server is located. If
you are installing Serena Release Automation in a production environment,
Serena recommends you use one of the supported databases (Oracle Database
(all versions), SQL Server, or MySQL).

Installation Steps

1. Review the system requirements. See System Requirements [page 47].

2. Ensure that Java is installed on the server machines (and agent relay machine if
used). All server and agent relay machines require Java JRE 6 or greater. Set the
JAVA_HOME environment variable to point to the directory you intend to use. A JDK
can be used.

Note: This step does not apply to agent machines because the agent
installer installs a JRE.

3. Download the Serena Release Automation server and agent installation files from the
Serena support portal (see Downloading Serena Release Automation [page 49]).

4. If you are installing an agent relay, download the agent relay installation files as
well.

5. If you are not installing an evaluation version, install one of the supported
databases. The database should be installed before the server and on a separate
machine. See Database Installation [page 50].

6. Complete database installation by configuring the appropriate JDBC driver (typically
supplied by the database vendor).

7. Create an empty database for Serena Release Automation and at least one
dedicated user account.

8. Install the server. See Server Installation [page 53].

Getting Started

46 Serena® Orchestrated Ops

9. If you are using an agent relay, install the relay. See Installing Agent Relays [page
70].

10. Install at least one agent. See Agent Installation [page 64].

For information about using the command line interface (CLI), see Command Line Client
(CLI) [page 220].

For information about running the installed items and accessing the Serena Release
Automation web application, see Running Serena Release Automation [page 82].

Installation Recommendations
Important: Except for evaluation purposes, do not install an agent on the same
machine as the server.

Many Serena Release Automation users have found that by following these general
guidelines you can reduce the chances of performance-related issues:

• Install the server as a user account. The server should be installed as a
dedicated system account whenever possible. While not recommended, Serena
Release Automation can run as the root user (or local system user on Windows) and
running in this manner avoids all permission errors.

• Install each agent as a dedicated system account. Ideally, the account should
only be used by Serena Release Automation. Because Serena Release Automation
agents are command execution engines, it is advisable to limit what they can do on
host machines by creating dedicated users and then granting them appropriate
privileges. If you install an agent as the root user (or local system user on Windows),
ensure that agent processes cannot adversely affect the host file system.

• Except for evaluation purposes, do not install an agent on the Serena
Release Automation server machine. Because the agent is resource intensive,
installing one on the server machine can degrade performance during large
deployments.

• Install a single agent per host machine. Multiple agents on the same machine
can negatively impact each other's performance. When you must install multiple
agents, you might see performance degradation when multiple agents are busy
simultaneously.

System Requirements
Serena Release Automation will run on Windows and UNIX-based systems. While the
minimum requirements provided below are sufficient for an evaluation, you will want
server-class machines for production deployments.

Server Minimum Installation Requirements

• Windows: Windows 2000 Server (SP4) or later

• Processor: Single core, 1.5 GHz or better

• Disk Space: 300 MB or more

• Memory: 2 GB, with 256 MB available to Serena Release Automation

Serena Release Automation Guide 47

• Java version: JRE 6 or greater

Server Installation Recommendations

• Two server-class machines: Serena recommends two machines for the server: a
primary machine and a standby for fail-over. In addition, the database should be
hosted on a separate machine.

• Separate machine for the database

• Processor: 2 CPUs, 2+ cores for each

• RAM: 8 GB

• Storage: Individual requirements depend on usage, retention policies, and
application types. In general, the larger number of artifacts kept in Serena Release
Automation's artifact repository (CodeStation), the more storage needed.

Note: CodeStation is installed when the Serena Release Automation server
is installed.

For production environments, use the following guidelines to determine storage
requirements:

▪ 10-20 GB of database storage should be sufficient for most environments.

▪ To calculate CodeStation storage requirements:

average artifact size * number of versions imported per day * average
number of days before cleanup

▪ Approximately 1MB per deployment of database storage; varies based on local
requirements.

For further assistance in determining storage requirements, contact Serena
Customer Support.

• Network Gigabit (1000) Ethernet with low-latency to the database.

Agent Minimum Requirements

Designed to be minimally intrusive (typically, an idle agent uses 5Mz CPU), agents require
64-256 MB of memory and 100 MB of disk space. Additional requirements are determined
by the processes the agent will run.

For a simple evaluation, the agent can be installed on the same physical machine as the
server.

Important: In production environments, Serena highly recommends installing
agents on separate machines.

32- and 64-bit JVM Support

The Serena Release Automation server and agent installers both contain only a 32-bit JVM
for all platforms. Because Serena Release Automation does not require a multi-gigabyte
heap, there is little advantage to using a 64-bit JVM. However, there are exceptions. For

Getting Started

48 Serena® Orchestrated Ops

details, see the Server JVM Support table [page 0] and the Agent JVM Support table [page
0].

Table 1. Server JVM Support table

Operating System JVM 32-bit JVM 64-bit

Windows 32-bit yes Does not apply

Windows 64-bit* yes yes

*Windows 2003 64-bit must use not supported

UNIX 32-bit yes Does not apply

UNIX 64-bit yes yes

Table 2. Agent JVM Support table

Operating System JVM 32-bit JVM 64-bit

Windows 32-bit yes Does not apply

Windows 64-bit yes yes

Windows 2003 64-bit yes yes

UNIX 32-bit yes does not apply

UNIX 64-bit yes yes

Downloading Serena Release Automation
The installation package is available from the Serena support portal. If you need help
accessing the portal, contact your Serena Sales representative.

Note: You must have a license in order to download the product. For an
evaluation license, please contact your Serena Sales Representative.

1. Go to http://support.serena.com/Case/CaseHome.aspx and log in using your
customer account.

If you do not have an account, please contact your Sales Representative.

2. Browse to the My Downloads tab.

3. From the Please Select Product drop-down, select Serena Release Automation.

4. Select the Serena Release Automation version you want to download.

Serena Release Automation Guide 49

http://support.serena.com/Case/CaseHome.aspx

5. Select the appropriate package for your environment for the server, agent, and
agent relay.

Serena Release Automation enables you to install agents on any supported platform,
regardless of the operating system where the server is installed.

A license file should have been provided to you by your Serena Sales Representative.

Database Installation
In addition to the supplied Derby database, Serena Release Automation currently supports
Oracle, SQL Server, and MySQL (see Installing Oracle [page 50], Installing MySQL [page
51], or Installing Microsoft SQL Server [page 52]).

Installing Oracle

Before installing the Serena Release Automation server, install an Oracle database. If you
are evaluating Serena Release Automation, you can install the database on the same
machine where the Serena Release Automation server will be installed.

When you install Serena Release Automation, you will need:

• the Oracle connection information, and

• a user account with table creation privileges.

Serena Release Automation supports the following editions:

• Oracle Database Enterprise

• Oracle Database Standard

• Oracle Database Standard One

• Oracle Database Express

Version 10g or later is supported for each edition.

To install an Oracle database:

1. Download and install the JDK–not a JRE–that corresponds to your operating system
(see http://www.oracle.com/technetwork/java/javase/downloads/).

2. Download the Oracle JDBC driver specific to the database edition you are using (see
http://www.oracle.com/technetwork/indexes/downloads/index.html) and save in
your Apache-Tomcat libs folder.

3. Install the JDBC driver.

4. Create the Oracle database by executing the following commands:

CREATE USER serena_ra IDENTIFIED by serena_ra;

GRANT CONNECT TO serena_ra;

GRANT RESOURCE TO serena_ra;

5. Begin server installation, see Server Installation [page 53].

Getting Started

50 Serena® Orchestrated Ops

http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/indexes/downloads/index.html

Select the Oracle database option in the installer.

6. Provide the Oracle JDBC driver (see step 2).

7. Provide the JDBC driver class Serena Release Automation will use to connect to the
database.

The default value is:

oracle.jdbc.driver.OracleDriver

8. Provide the JDBC connection string. The format depends on the JDBC driver.
Typically, it is similar to:

jdbc:oracle:thin:@[DB_URL]:[DB_PORT]/[SID]

For example:

jdbc:oracle:thin:@localhost:1521/dim12

9. Finish by entering the database username and password.

Note: The schema name must be the same as the user name.

Installing MySQL

Before installing the Serena Release Automation server, install MySQL. If you are
evaluating Serena Release Automation, you can install the database on the same machine
where the Serena Release Automation server will be installed.

When you install Serena Release Automation, you will need the MySQL connection
information, and a user account with table creation privileges.

To install the MySQL database:

1. Create a database by executing the following commands:

CREATE DATABASE serena_ra;

GRANT ALL ON serena_ra.* TO 'serena_ra'@'%'

IDENTIFIED BY 'password' WITH GRANT OPTION;

2. Obtain the MySQL JDBC driver.

The JDBC jar file is included among the MySQL installation files. The driver is unique
to the edition you are using.

3. Begin server installation, see Server Installation [page 53].

Select the MySQL database option in the installer.

4. Provide the MySQL JDBC driver (see step 2).

The default value is com.mysql.Driver.

5. Provide the JDBC connection string. Typically, it is similar to:

jdbc:mysql[DB_URL]:[DB_PORT]:[DB_NAME]

Serena Release Automation Guide 51

For example:

jdbc:mysql://localhost:3306/serena_ra

6. Finish by entering the database username and password.

Installing Microsoft SQL Server

Before installing the Serena Release Automation server, install a SQL Server database. If
you are evaluating Serena Release Automation, you can install the database on the same
machine where the Serena Release Automation server will be installed.

When you install Serena Release Automation, you will need the SQL Server connection
information, and a user account with table creation privileges.

To install the MS SQL Server database:

1. Download and install the JDK–not a JRE–that corresponds to your operating system
(see http://www.oracle.com/technetwork/java/javase/downloads/).

2. Download the SQL Server JDBC driver from http://www.microsoft.com/en-gb/
download/ and save it in your Apache-Tomcat libs folder.

3. Install the JDBC driver.

4. Using the SQL Server Management Studio, execute the following commands:

CREATE DATABASE serena_ra;

USE serena_ra;

CREATE LOGIN serena_ra WITH PASSWORD = 'password';

CREATE USER serena_ra FOR LOGIN serena_ra WITH DEFAULT_SCHEMA =
serena_ra;

CREATE SCHEMA serena_ra AUTHORIZATION serena_ra;

GRANT ALL TO serena_ra;

5. Begin server installation, see Server Installation [page 53].

6. Select the SQL Server database option in the installer.

7. Provide your SQL Server database details:

Table 1. MS SQL Server Database Installation Details table

Field Description

JDBC
driver jar
filename

Browse to and select the JDBC driver jar file you downloaded in step 2.

JDBC
driver
class

The default value is:
com.microsoft.sqlserver.jdbc.SQLServerDriver

Getting Started

52 Serena® Orchestrated Ops

http://www.oracle.com/technetwork/java/javase/downloads/
http://www.microsoft.com/en-gb/download/
http://www.microsoft.com/en-gb/download/

Field Description

Database
connection
string

The format depends on the JDBC driver. Typically, it is similar to:
jdbc:sqlserver://[DB_URL]:[DB_PORT];databaseName=[DB_NAME]
For example,
jdbc:sqlserver://localhost:1433;databaseName=serena_ra

User Database username. The default is serena_ra.

Password
and
Confirm
password

Database username password, and re-entry for confirmation.

Server Installation
The server provides services such as the user interface used to configure application
deployments, the work flow engine, the security service, and the artifact repository,
among others.

Important: If you are installing the server in a production environment, install
and configure the database you intend to use before installing the server. See
Database Installation [page 50].

Interactive Server Installation (Windows, Linux/UNIX (AIX,
Solaris)

Note: (Linux 64-bit systems only) The appropriate compatibility package must
be installed for 32-bit compatability mode; the Serena Release Automation
server installer is a 32-bit application.

This type of installation utilizes a wizard that guides you through the complete process.
The properties set during the server installation are recorded in the
installed.properties file located in the server_install/conf/server/ directory.

To install the server:

1. Download the installation files. For more information, see Downloading Serena
Release Automation [page 49].

Note: Root priveledges are required to install the Serena Release
Automation server on a UNIX server; the installer writes product
registration data into the /var/opt/ directory.

2. Run the downloaded installer SerenaRA-Server.exe, or your platform-specific
alternative, and follow the step-by-step instructions. See also:

• (Windows) Server Install: Destination Folder Panel [page 54]

• (Windows) Server Install: Administrator Details Panel [page 55]

Serena Release Automation Guide 53

(Windows) Server Install: Destination Folder Panel

The following table describes the fields that appear on the Windows server install wizard,
Destination Folder panel:

Field Default Description

Install Serena
Release
Automation
to:

C:\Users\<username>\.serena\ra Directory to install the Serena
Release Automation server.

Use existing
settings

not selected For upgrading or reinstall. If you
want to install the server using
the existing settings and
maintain the database, select this
option.

Skip database
creation

not selected For upgrading or reinstall. If you
are using any database other
than Derby and you want to
install the server using the
existing settings and maintain
the existing database, select this
option.

Note: You will need to
provide connectivity
information to get
access to existing
database.

JMS
Connections
port

7918 Specifies the port on which the
Serena Release Automation
agents you install will make JMS
Connections to the Serena
Release Automation server.

Agent Mutual
Authentication

not selected If selected, agent will use SSL
mutual authentication. If not
selected, agent will use
unauthenticated mode;
communication is encrypted but
users do not have to authenticate
or verify their credentials. For
more information, see SSL
Configuration [page 75].

Getting Started

54 Serena® Orchestrated Ops

(Windows) Server Install: Administrator Details Panel

The following table describes the fields that appear on the Windows server install wizard,
Administrator Details panel:

Field Default Description

Administrator
User

admin Specify the installation owner's administration user name.
This will be the Username required to log into the Server
the first time.

Password does
not
apply

(Required) User-defined password for the Administrator
User name entered in the previous field. This will be the
password needed to log into the Server the first time.

Confirm
Password

does
not
apply

(Required) Re-enter password exactly as entered in the
Password field.

Server Installation (Other UNIX Platforms)

These server installation instructions are for UNIX platforms other than Linux/UNIX (AIX,
Solaris).

To install the server:

1. Download the serena_ra.war file. This file is contained in the Serena.RA-
Other40.zip. For more information, see Downloading Serena Release Automation
[page 49].

2. Stop Apache Tomcat.

3. Copy and paste the serena_ra.war file into your Tomcat 1.6 or higher or Serena
Common Tomcat webapps folder.

4. Restart Tomcat.

5. Launch a browser and navigate to http://localhost:8080/serena_ra.

The configuration setup displays.

6. Modify any configuration parameters as needed:

• Install location

• External Web URL

• Agent port and choice of mutual authentication

• Database (port, schema, user, password)

7. Click Install.

When the server installation is complete, the Serena Release Automation login page
displays.

Serena Release Automation Guide 55

http://localhost:8080/serena_ra

Silent Mode Server Installation

This section contains information about how to implement a silent install of the Serena
Release Automation server on Windows (see (Windows) Server Silent Installation [page
56]),and Linux/UNIX (AIX, Solaris), see (Linux/UNIX Platforms) Server Silent Install [page
60].

(Windows) Server Silent Installation

To install the server in silent mode:

1. Download the installation files. For more information, see Downloading Serena
Release Automation [page 49].

2. Create an options file and save as C:/optiontsFile.txt (see (Windows) Server
Silent Install Options [page 56]).

3. In Windows, issue the command:

cmd /c SerenaRA-Server.exe /s /V"/qn /L*vx "%TEMP%\silent-install.log"
PROPFILE=\"c:\optionsFile.txt\" "

Where:

• "%TEMP%\silent-install.log" is an absolute path to a logfile.

• PROPFILE=\"c:\optionsFile.txt\" is an absolute path to the options file you
created in Step 2.

• You have included the required space between the final two quotes.

For examples of the optionsFile.txt, see (Windows) Server Silent Install:
OptionsFile.txt Examples [page 58]).

(Windows) Server Silent Install Options

Option Default/if not
specified

Description

AgreeToLicense No must be set to Yes

USE_EXISTING_SETTINGS Set to UseExisting if you want to skip
the database install and administration
part of the installation.

Important: Use only if
there are existing Serena
Release Automation settings
populated in the directory
specified by:
SRA_USER_INSTALLDIR.

Getting Started

56 Serena® Orchestrated Ops

Option Default/if not
specified

Description

SRA_USER_INSTALLDIR c:\Documents
and Settings\→
Administrator\→
.serena\ra

Directory to install the Serena Release
Automation server, or if using the
USE_EXISTING_SETTINGS=→
"UseExisting" option, the directory
where your Serena Release
Automation settings already exist.

SKIP_DB To skip database creation, include and
set this option: SKIP_DB=SkipDB

Note: To use this option, the
SRA_USER_INSTALLDIR must
not already exist.

AGENT_MUTUAL_AUTH N agent mutual authentication option:
y|N For more information, see SSL
Configuration [page 75].

JMS_PORT 7918 server port

DB_TYPE derby Use to specify a database vendor other
than the default: MYSQL|ORA|SQLSVR

<DB>_USER serena_ra database user ID, where <DB> is:
DERBY|MYSQL|ORA|SQLSVR

<DB>_PASSWORD password password for database user ID, where
<DB> is: DERBY|MYSQL|ORA|SQLSVR

ORA_DB_SCHEMA (Required for Oracle) database schema

<DB>_JDBC_DRIVER (Required)For database other than
Derby, JDBC database driver file,
where <DB> is
DERBY|MYSQL|ORA|SQLSVR

DERBY_PORT (Required for Derby) specify the Derby
port 11377

<DB>_DB_CONN (Required)For database other than
Derby, database connection, where
<DB> is MYSQL|ORA|SQLSVR

IS_INSTALL_MODE (Required) must be set to: "silent"

Serena Release Automation Guide 57

Option Default/if not
specified

Description

SRA_ADMIN (Required) specify the installation
owner's administration user name.

SRA_ADMIN_PWD (Required) user-defined password for
the user name set by the SRA_ADMIN
option.

TC_PORT 8080 Tomcat port. Only used for new
Serena Common Tomcat installations.

For examples of the option settings needed for each database (Derby, Oracle, MySQL, and
MS SQL Server), see (Windows) Server Silent Install: OptionsFile.txt Examples [page 58].

(Windows) Server Silent Install: OptionsFile.txt Examples

This section contains examples of how to configure the install options in an
optionsFile.txt file for a server silent install on Windows.

Derby Database optionsFile.txt example

AgreeToLicense=Yes
USE_EXISTING_SETTINGS=""
SRA_USER_INSTALLDIR=C:\Documents and Settings\Administrator\.serena\ra
SKIP_DB=""
AGENT_MUTUAL_AUTH=""
JMS_PORT=7918
DERBY_PORT=11377
DERBY_USER=serena_ra
DERBY_PASSWORD=serena_ra
IS_INSTALL_MODE=silent
SRA_ADMIN=admin1234
SRA_ADMIN_PWD=password123
TC_PORT=8088

Note: All defaults are used except for the Tomcat Port which is set to 8088.

"Use Existing Settings" optionsFile.txt example

AgreeToLicense=Yes
USE_EXISTING_SETTINGS=UseExisting
SRA_USER_INSTALLDIR=C:\Documents and Settings\Administrator\.serena\ra
SRA_ADMIN=admin1234
SRA_ADMIN_PWD=password123
TC_PORT=8080

Note: A Serena Release Automation server installation location already exists as
specified by the SRA_USER_INSTALLDIR option. Using this optionsFile.txt, the
server will be installed and the existing settings will be used for the install.

Getting Started

58 Serena® Orchestrated Ops

MySQL Database optionsFile.txt example

AgreeToLicense=Yes
SRA_USER_INSTALLDIR=C:\Documents and Settings\Administrator\.serena\ra
SKIP_DB=""
AGENT_MUTUAL_AUTH=""
JMS_PORT=7918
DB_TYPE=mysql
JDBC_DRIVER_SOURCE=c:\TestArea\libloc\mysql-connector-java-5.1.24-bin.jar
MYSQL_JDBC_DRIVER=com.mysql.jdbc.Driver
MYSQL_DB_CONN=jdbc:mysql://localhost:3306/serena_ra
MYSQL_USER=serena_ra
MYSQL_PASSWORD=passwordabc
IS_INSTALL_MODE=silent
SRA_ADMIN=admin1234
SRA_ADMIN_PWD=password123
TC_PORT=8080

Oracle Database optionsFile.txt example

...

...
DB_TYPE=oracle
JDBC_DRIVER_SOURCE=c:\TestArea\libloc\oracle-connector-ojdbc5.jar
ORA_JDBC_DRIVER=oracle.jdbc.driver.OracleDriver
ORA_DB_CONN=jdbc:oracle:thin:@localhost:1521/serena_ra
ORA_DB_SCHEMA=serena_ra
ORA_PASSWORD=password123...

MS SQL Server Database optionsFile.txt example

...

...
DB_TYPE=sqlserver
SQLSVR_JDBC_DRIVER=com.microsoft.sqlserver.jdbc.SQLServerDriver
SQLSVR_DB_CONN=jdbc:sqlserver://localhost:1433;DatabaseName=serena_ra
SQLSVR_USER=serena_ra
SQLSVR_PASSWORD=mypassword...

"Skip Database Creation" optionsFile.txt example

AgreeToLicense=Yes
SRA_USER_INSTALLDIR=C:\Documents and Settings\Administrator\.serena\ra
SKIP_DB=SkipDB
AGENT_MUTUAL_AUTH=""
JMS_PORT=7918
DB_TYPE=sqlserver
SQLSVR_JDBC_DRIVER=com.microsoft.sqlserver.jdbc.SQLServerDriver
SQLSVR_DB_CONN=jdbc:sqlserver://localhost:1433;DatabaseName=serena_ra
SQLSVR_USER=serena_ra
SQLSVR_PASSWORD=mypassword

Serena Release Automation Guide 59

IS_INSTALL_MODE=silent
TC_PORT=8080

Note: The SRA_USER_INSTALLDIR specified must not already exist. Using this
optionsFile.txt because the SKIP_DB=skipDB option is specified, the DB_TYPE
option cannot be set to derby, and the SRA_ADMIN and SRA_ADMIN_PWD
options cannot be set during the server installation.

(Linux/UNIX Platforms) Server Silent Install

Note: (Linux 64-bit systems only) The appropriate compatibility package must
be installed for 32-bit compatability mode; the Serena Release Automation
server installer is a 32-bit application.

To install the server in silent mode:

1. Download the installation files. For more information, see Downloading Serena
Release Automation [page 49].

2. Create an optionsFile.txt and save it to the root directory (see (Linux/UNIX)
Server Silent Install Options.

3. In Linux/UNIX(AIX, Solaris), as a user with root privileges issue the command:

SerenaRA-server.bin -silent -options optionsFile.txt

Where:

optionsFile.txt is a file that contains the properties you have set for your system.

For examples of the optionsFile.txt, see (Linux/UNIX) Server Silent Install:
optionsFile.txt Examples [page 63].

(Linux/UNIX) Server Silent Install Options

This section provides the list and description of the Linux/UNIX (AIX, Solaris) silent install
options, and examples of the option settings needed for each database (Derby, Oracle,
MySQL, and MS SQL Server).

For examples of the optionsFile.txt, see (Linux/UNIX) Server Silent Install:
optionsFile.txt Examples [page 63].

(Linux/UNIX) Server silent install options table

Option Default Description

-V IS_SELECTED_INSTALLATION_TYPE
typical must be set to typical (do not

enclose in quotes)

-P installLocation
Directory to install the Serena
Release Automation server. Should
be set to "/opt/serena/sra"

Getting Started

60 Serena® Orchestrated Ops

D:\bld\SOO4_X\SOO4_X-DOC\Documentation\output\sra_guide\DitaOut\refinstsrvsiluxops.xml#reference2363
D:\bld\SOO4_X\SOO4_X-DOC\Documentation\output\sra_guide\DitaOut\refinstsrvsiluxops.xml#reference2363

Option Default Description

-V IS_DESTINATION
Directory to install the Serena
Release Automation server. Should
be set to "/opt/serena/sra"

-V ServerDetailsUseExisting
false To skip the database install and

administration part of the
installation, include and set to
"true".

Important: Use only if
there are existing Serena
Release Automation
settings populated in the
directory specified by:
"SRA_USER_INSTALLDIR".

-V ServerDetailsSkipDb
false To skip database creation, include

and set this option to "true".

-V ServerDetailsPort
7918 server port

-V ServerDetailsMutualAuth
false agent mutual authentication

option: "false"|true For more
information, see SSL Configuration
[page 75].

-V SctFoundLoc
To reuse an existing Serena
Common Tomcat/Tools, specify
and set to true. When set to true,
you must also include the
"SctInstallLoc" option.

-V SctInstallLoc
(Required) If you specify the
"SctFoundLoc" option to reuse an
existing Serena Common Tomcat/
Tools, you must use this option to
specify the location of the existing
Serena Common Tomcat/Tools.

-V DbDetailsVendor
derby Use to specify a database vendor

other than the default:
oracle|mysql|sqlserver

Serena Release Automation Guide 61

Option Default Description

-V DbDetailsUser
serena_ra database user ID

-V DbDetailsPwd
password password for database user ID

-V DbDetailsSchema
(Required for Oracle) database
schema

-V DbDetailsDriver
database driver class, for example:
org.apache.derby.jdbc.→
ClientDriver

dbDetailsDriverFilename
Required for a database other than
Derby; specify a database driver
file.

-V DbDetailsDerbyPort
(Required for Derby) specifies the
Derby port 11377

-V DbDetailsConnection
database connection

-V IS_INSTALL_MODE
must be set to: "silent"

-V AdminDetailsName
Specifies the installation owner's
administration user name.

-V AdminDetailsPwd
(Required) user-defined password
for the username set by the
AdminDetailsName option.

-V SctTomcatOwner
system user to own Serena
Common Tomcat files; valid for
new Serena common Tomcat
scenario.

Getting Started

62 Serena® Orchestrated Ops

Option Default Description

-V SctTomcatPort
8080 Tomcat port. Only used for new

Serena Common Tomcat
installations. See the SctFoundLoc
option.

(Linux/UNIX) Server Silent Install: optionsFile.txt Examples

This section contains examples of how to configure the install options in an
optionsFile.txt file for a server silent install on Linux/UNIX (AIX, Solaris).

Derby Database optionsFile.txt example

Note: This options file reuses an existing Serena Common Tomcat installation
(SctFoundLoc="true"). The location of the existing Tomcat is specified by
SctInstallLoc="/opt/serena/common".

-V IS_SELECTED_INSTALLATION_TYPE=typical
-P installLocation="/opt/serena/sra"
-V IS_DESTINATION="/opt/serena/sra"
-V SctFoundLoc="true"
-V SctInstallLoc="/opt/serena/common"
-V DbDetailsVendor="derby"
-V DbDetailsUser="User01"
-V DbDetailsPwd="MyPassword"
-V DbDetailsDriver="org.apache.derby.jdbc.ClientDriver"
-V DbDetailsDerbyPort="11377"
-V DbDetailsConnection="jdbc\:derby\://localhost\:11377/data"
-V ServerDetailsMutualAuth="false"
-V IS_INSTALL_MODE="silent"
-V AdminDetailsName="admin123"
-V AdminDetailsPwd="mypassword123"

MySQL Database optionsFile.txt example

-V IS_SELECTED_INSTALLATION_TYPE=typical
-P installLocation="/opt/serena/sra"
-V IS_DESTINATION="/opt/serena/sra"
-V DbDetailsVendor="mysql"
-V DbDetailsUser="sra"
-V DbDetailsPwd="sra"
-V DbDetailsDriver="com.mysql.jdbc.Driver"
-V DbDetailsConnection="jdbc\:mysql\://localhost\:3306/serena_ra"
-V ServerDetailsMutualAuth="false"
-V IS_INSTALL_MODE="silent"
-V AdminDetailsName="admin123"
-V AdminDetailsPwd="mypassword123"
-V SctTomcatOwner=dmsys
-V SctTomcatPort="8080"

Serena Release Automation Guide 63

Oracle Database optionsFile.txt example

-V IS_SELECTED_INSTALLATION_TYPE=typical
-P installLocation="/opt/serena/sra"
-V IS_DESTINATION="/opt/serena/sra"
-V DbDetailsVendor="oracle"
-V DbDetailsUser="User02"
-V DbDetailsPwd="MyPassword"
-V DbDetailsSchema="serena_ra"
-V DbDetailsDriver="oracle.jdbc.driver.OracleDriver"
-V DetailsConnection="jdbc\:oracle\:thin\:@localhost\:1521"
-V ServerDetailsMutualAuth="false"
-V IS_INSTALL_MODE="silent"
-V AdminDetailsName="admin123"
-V AdminDetailsPwd="mypassword123"
-V SctTomcatOwner="dmsys"
-V SctTomcatPort="8080"

MS SQL Server Database optionsFile.txt example

-V IS_SELECTED_INSTALLATION_TYPE=typical
-P installLocation="/opt/serena/sra"
-V IS_DESTINATION="/opt/serena/sra"
-V DbDetailsVendor="sqlserver"
-V DbDetailsUser="User03"
-V DbDetailsPwd="MyPassword"
-V DbDetailsDriver="com.microsofl.sqlserver.jdbc.SQLServerDriver"
-V DbDetailsConnection="jdbc\:sqlserver\://localhost\:1433;DatabaseName=serena_ra"
-V ServerDetailsMutualAuth="false"
-V IS_INSTALL_MODE="silent"
-V AdminDetailsName="admin123"
-V AdminDetailsPwd="mypassword123"
-V SctTomcatOwner="dmsys"
-V SctTomcatPort="8080"

Agent Installation
For production environments, Serena recommends creating a user account dedicated to
running the agent on the machine where the agent is installed.

For simple evaluations, the administrative user can run the agent on the machine where
the server is located. But if you plan to run deployments on several machines, a separate
agent should be installed on each machine. If, for example, your testing environment
consists of three machines, install an agent on each one. Follow the same procedure for
each environment the application uses.

Important: Except for evaluation purposes, do not install an agent on the same
machine as the server.

Each agent needs the appropriate rights to communicate with the Serena Release
Automation server.

At a minimum, each agent should have permission to:

Getting Started

64 Serena® Orchestrated Ops

• Create a cache. By default, the cache is located in the home directory of the user
running the agent. The cache can be moved or disabled.

• Open a TCP connection. The agent uses a TCP connection to communicate with the
server's JMS port.

• Open a HTTP(S) connection. The agent must be able to connect to the Serena
Release Automation user interface in order to download artifacts from the
CodeStation repository.

• Access the file system. Many agents need read/write permissions to items on the
file system.

Interactive Agent Installation (Windows, Linux/UNIX (AIX,
Solaris, HP-UX)

This type of installation utilizes a wizard that guides you through the complete process.

To install the agent:

1. Download the installation files. For more information, see Downloading Serena
Release Automation [page 49].

2. Run the downloaded installer SerenaRA-Agent.exe, or your platform-specific
alternative, and follow the step-by-step instructions.

Note: Root priveledges are required to install the Serena Release
Automation server on a UNIX server; the installer writes product
registration data into the /var/opt/ directory.

Silent Mode Agent Installation

This section contains information about how to implement a silent install of the Serena
Release Automation agent on Windows, Linux/UNIX (AIX, Solaris, HP-UX).

Important: Before you can implement a silent install of an agent, you must
create and save an optionsFile.txt.

(Windows) Agent Silent Installation

To install an agent in silent mode:

1. Download the appropriate agent installer for your platform. For more information,
see Downloading Serena Release Automation [page 49].

2. Create an options file and save as:

C:/optiontsFile.txt

Note: Your optionsFile should be in ANSI format; the agent installer does
not support UTF.

3. Issue the command:

SerenaRA-Agent.exe -silent -options optionsFile.txt

where:

Serena Release Automation Guide 65

optionsFile.txt

is the options file you created in Step 2.

(Windows) Agent Silent Install Options

Option Description

-P installLocation
(Required) Location into which the agent will be
installed.

-V IS_DESTINATION
(Required) Location into which the agent will be
installed.

-V AgentName
(Required) Name of the agent.

-V AgentOwner
(Linux/UNIX Required) User name of agent installation
owner.

-V UseRelayYes
(Required) To use an agent relay set to true, if not, set
to false.

-V RelayHost
(Required only if -V UseRelayYes=true is specified.)
The hostname of the agent relay to be used.

-V RelayPort
(Required only if -V UseRelayYes=true is specified.)
The port number of the agent relay to be used.

-V RelayProxyPort
(Required only if -V UseRelayYes=true is specified.)
The proxy port number of the agent relay.

-V ServerHost
(Required if -V UseRelayYes=false) The hostame of
the release automation server.

-V ServerPort
(Required if -V UseRelayYes=false) The port number
of the release automation server.

-V ServerMutAuth
(Required) If mutual authentication will be used with the
server set to true, otherwise set to false.

Getting Started

66 Serena® Orchestrated Ops

Option Description

-V JreNew
(Required) To install a new JRE with the agent, set to
true, if not then set to false.

-V JreInstallLoc
(Required if -V JreNew=false) To specify the location of
a pre-existing JRE for the agent to use.

-V ServiceYes
(Windows Required) To create a Windows service for the
agent, set to true, otherwise set to false. This option
is only valid for Windows systems.

Note: The following fields are only required when you specify -V
ServiceYes=True and only apply to Windows systems.

-V ServiceName
(Required only when -V ServiceYes=True) is specified.
The name to use for the Windows service.

-V ServiceStartAuto
(Required only when -V ServiceYes=True) is specified.
To configure the Windows service to start automatically,
set to true, if not set to false.

-V ServiceAccName
(Required only when -V ServiceYes=True) is specified.
To specify the log on user account name for the
Windows service.

-V ServiceAccPass
(Required only when -V ServiceYes=true) is specified.
To specify the log on user account password for the
Windows service.

For examples of the option settings needed for each database (Derby, Oracle, MySQL, and
MS SQL Server), see (Windows) Agent Silent Install: OptionsFile.txt Example [page 67].

(Windows) Agent Silent Install: OptionsFile.txt Example

This section contains an example of how to configure the install options in an
optionsFile.txt file for an agent silent install on Windows.

Example: Agent Windows optionsFile.txt

Using this optionsFile.txt, the agent will be named agent123, be configured to connect
directly to the server on serverabc (not through an agent relay), and will point to a new
installation of a JRE. Mutual Authentication mode will be activated for the agent, and the
agent will run as a Windows service under the name SRA-Agent123 that will start
automatically when the system starts. The agent Windows service admin user account
name will be set to: admin01, with the password: password.

Serena Release Automation Guide 67

-P installLocation="C:\Program Files (x86)\Serena\Release Automation Agent"
-V IS_DESTINATION="C:\Program Files (x86)\Serena\Release Automation Agent"
-V AgentName="agent123"
-V UseRelayYes="false"
-V ServerHost="serverabc"
-V ServerPort="7918"
-V ServerMutAuth="true"
-V ServiceYes="true"
-V ServiceName="sra-agent123"
-V ServiceStartAuto="true"
-V ServiceAccName="admin01"
-V ServiceAccPass="password"
-V JreNew="true"

(Linux/UNIX Platforms) Agent Silent Installation

To install an agent in silent mode:

1. Download the appropriate agent installer for your platform. For more information,
see Downloading Serena Release Automation [page 49].

2. Create an options file and save as:

optiontsFile.txt

Note: Your optionsFile should be in ANSI format; the agent installer does
not support UTF.

3. Issue the command:

SerenaRA-Agent.exe –silent –options optionsFile.txt

where:

optionsFile.txt

is the options file you created in Step 2.

(Linux/UNIX) Agent Silent Install Options

Option Description

-P installLocation
(Required) Location into which the agent will be installed.

-V IS_DESTINATION
(Required) Location into which the agent will be installed.

-V AgentName
(Required) Name of the agent.

Getting Started

68 Serena® Orchestrated Ops

Option Description

-V AgentOwner
(Linux/UNIX Required) User name of agent installation
owner.

-V UseRelayYes
(Required) To use an agent relay set to true, if not, set
to false.

-V RelayHost
(Required only if -V UseRelayYes="true" is specified.)
The hostname of the agent relay to be used.

-V RelayPort
(Required only if -V UseRelayYes="true" is specified.)
The port number of the agent relay to be used.

-V RelayProxyPort
(Required only if -V UseRelayYes="true" is specified.)
The proxy port number of the agent relay.

-V ServerHost
(Required if -V RelayPortYes="false") The hostame of
the release automation server.

-V ServerPort
(Required if -V UseRelayYes="false") The port number
of the release automation server.

-V ServerMutAuth
(Required) If mutual authentication will be used with the
server set to true, otherwise set to false.

-V JreNew
(Required) To install a new JRE with the agent, set to
true, if not then set to false.

-V JreInstallLoc
(Required if -V JreNew="false") To specify the location
of a pre-existing JRE for the agent to use.

-V ServiceYes
(Windows Required) To create a Windows service for the
agent, set to true, otherwise set to false. This option is
only valid for Windows systems.

For related information, see (Linux/UNIX) Agent Silent Install: OptionsFile.txt Examples
[page 70], and (Linux/UNIX Platforms) Agent Silent Installation [page 68].

Serena Release Automation Guide 69

(Linux/UNIX) Agent Silent Install: OptionsFile.txt Examples

This section contain examples of optionsFile.txt file configurations for an agent silent
install on a Linux or a UNIX platform.

Example 1: Agent Linux/UNIX platforms optionsFile.txt

Using this optionsFile.txt, during install the agent will be configured to connect directly
with the server on serverabc (not through an agent relay), will turn mutual
authentication mode on for the agent and install a new JRE.

-P installLocation="/opt/serena/Release_Automation_Agent"
-V IS_DESTINATION="/opt/serena/Release_Automation_Agent"
-V AgentName="agent123"
-V AgentOwner="Admin01"
-V UseRelayYes="false"
-V ServerHost=serverabc
-V ServerPort="7918"
-V ServerMutAuth="true"
-V JreNew="true"

Example 2: Agent Linux/UNIX platforms optionsFile.txt

Using this optionsFile.txt, during installl the agent will be configured to use an agent relay
named relayagent01 on port 7916 to connect to the server. Mutual Authentication for the
agent will be turned on, and the agent will be configured to point to and use the JRE that
currently exists in: /opt/Java/.

-P installLocation="/opt/serena/Release_Automation_Agent"
-V IS_DESTINATION="/opt/serena/Release_Automation_Agent"
-V AgentName="agentABC"
-V AgentOwner="Admin02"
-V UseRelayYes="true"
-V RelayHost="relayagent01"
-V RelayPort="7916"
-V ServerMutAuth="true"
-V JreNew="false"
-V JreInstallLoc="/opt/Java/"

Installing Agent Relays
An agent relay is a communication proxy for agents that are located behind a firewall or in
another network location. As long as there is at least a low bandwidth WAN connection
between the server and remote agents, the Serena Release Automation server can send
work to agents located in other geographic locations via the relay. An agent relay requires
that only a single machine in the remote network contact the server. Other remote agents
communicate with the server by using the agent relay. All agent-server communication
from the remote network goes through the relay.

You can download the agent relay installation package from the Serena support portal
http://support.serena.com/Case/CaseHome.aspx. Before installing, ensure that:

• Java 1.6.0 or later is installed.

Getting Started

70 Serena® Orchestrated Ops

http://support.serena.com/Case/CaseHome.aspx

• The server with which the relay will connect is already installed.

• The user account and password created during server installation is available.

To install an agent relay:

1. Expand the compressed installation file.

2. From within the expanded agent-relay-install directory run the install.cmd
script.

3. The installation program will prompt you for the following information. Any default
values suggested by the program (displayed within brackets) can be accepted by
simply pressing Enter. If two options are given, such as Y/n, the capitalized option
is the default value.
Table 1. Agent Relay Configuration table

Parameter Description

Directory
where you
would like to
install the
agent relay

Enter the directory where you want the agent relay installed.

Java home Directory where Java is installed. Ensure that the JAVA_HOME
environment variable points to this directory.

Name of this
relay

Enter the name of the agent relay. Each relay must have a
unique name. The default name is agent-relay.

IP or hostname
which this
agent relay
should use

Enter the IP or hostname on which the relay will listen.

Port which this
agent relay
should proxy
HTTP requests
on

Enter the port on which the agent relay should listen for HTTP
requests coming from agents. The default value is 20080.

Port which this
agent relay
should use for
communication.

Enter the port on which the agent relay will use for JMS-based
communications with remote agents. The default value is
7916.

Connect the
agent relay to a
central server?

Specify whether you want the relay to connect to the Serena
Release Automation server.

Serena Release Automation Guide 71

Parameter Description

IP or hostname
of your central
server

If you indicated that you want to connect the relay to the
server, enter the IP or host name where the relay can contact
the server.

Port which the
central server
uses for
communication

If you indicated that you want to connect the relay to the
server, enter the port the server uses to communicate with
agents. The default value is 7918.

Use secure
communication
between the
agent, relay
and server?

Specify whether you want to use SSL security for
communications between server, relay, and remote agents.
The default value is Y.

Important: To use the relay, you must answer yes.
Answering yes activates SSL security for HTTP- and
JMS-based communications. If you answer no, the
relay will not be able to communicate with the server
(which uses JMS for most communications).

Use mutual
authentication
between the
agent, relay
and server.

If mutual authentication is required, enter Y. See SSL
Configuration [page 75] for information about activating
mutual authentication.

Install the
Agent Relay as
Windows
service?

If you are installing the relay on Windows, you can install it as
a Windows service. The default value is N. If you specify Y, see
the following Agent Relay Windows Service Configuration table
[page 0].

If you choose to install the agent relay as a Windows service, the installation
program will also prompt you for the following information.

Note: If you need to modify the relay, you can edit these properties in the
agentrelay.properties file located in the relay_installation\conf
directory.

Table 2. Agent Relay Windows Service Configuration table

Parameter Description

Windows service
name

(Required) Unique name for the service. Default is
agentrelay

Getting Started

72 Serena® Orchestrated Ops

Parameter Description

User account
name for the
Windows service

(Required) An account name, including the domain path to
run the service as. For a local user, insert ".\" before the
user name. Default is .\localsystem

User account
password for the
Windows service

Password for the Windows service user account name.

Start the
service
automatically

(Required) Specify whether or not (y|N) you want the
Windows service to be started automatically. Default is N

Distributing Server Processing with Active/Active
The Active/Active feature enables you to distribute the processing load of a single server
across multiple servers while providing high server availability.Serena Release Automation
describes how to configure two different Active/Active approaches:

• Agents connect to a single endpoint that uses round-robin DNS or an agent relay
(Recommended, truly scalable method). See Connecting Agents to a Single
"Endpoint" [page 74].

• Agents connected to a series of endpoints (Not recommended for large, scalable
installations. Recommended more for smaller, test cases). See Connecting Agents to
a Series of Server "Endpoints" [page 74].

Active/Active Server Installation

This is the server install process you need to use if you plan on using the Active/Active
feature of Serena Release Automation for server load balancing and fault tolerance.

Note: This install process is a required, prerequisite for the following:

• Connecting Agents to a Single "Endpoint" [page 74]

• Connecting Agents to a Series of Server "Endpoints" [page 74]

To install a server for Active/Active:

1. Install the shared database (for more information, see Database Installation [page
50]).

2. Install the first Serena Release Automation server into a shared .serena_ra folder
using a shared database.

Note: If you use a cluster with a load balancer, you should modify the
external agent url, and external user url fields to use the IP address or the
DNS name of the cluster (located in the server web interface, Settings tab,
System Settings).

3. Install additional servers, making sure to:

Serena Release Automation Guide 73

• set the "Install Serena Release Automation to:" field to the shared .serena_ra
folder.

• specify the “Use existing settings” option (see (Windows) Server Install:
Destination Folder Panel [page 54]).

4. Install agents and then see either Connecting Agents to a Single "Endpoint" [page
74], or Connecting Agents to a Series of Server "Endpoints" [page 74].

Connecting Agents to a Single "Endpoint"

The following steps describe how to connect agents to a single server "endpoint".

Important: This configuration is the preferred approach for High Availability
(HA) in enterprise environments. In certain circumstances, for example where
high availability is required but enterprise level support is not, the alternative
approach (see Connecting Agents to a Series of Server "Endpoints" [page 74]
may also be taken.

To connect agents to a single server "endpoint":

1. Install the Serena Release Automation server application on n servers for the Active/
Active feature (see Active/Active Server Installation [page 73]). These n servers are
used as a cluster with a load balancer.

2. To make it possible for agents to communicate with each of the server nodes within
the cluster, during agent installation the IP or DNS-name of the cluster should be set
as the communication host.

In this scenario, the load balancer will choose which of the server nodes
communicates with the agent.

Connecting Agents to a Series of Server "Endpoints"

The following steps describe how to connect agents to a series of server "endpoints" with
which, in the case of a server failure, the agents will attempt to communicate.

Important: In this configuration, high availability is maintained - it is possible
to connect agents to a series of endpoints - however enterprise level scalability
is not supported. This method is difficult to maintain with a full list of all servers.
Use this approach with caution. The preferred approach for High Availability
(HA) in enterprise environments is Connecting Agents to a Single "Endpoint"
[page 74]

To configure agents to connect to a single endpoint:

For the purpose of this example, the following procedure assumes a two-node cluster.

Note: The Serena Release Automation server application should be installed on
two servers for the Active/Active feature (see Active/Active Server Installation
[page 73]). These two servers are not used as a cluster with a load balancer.

1. Two example cluster nodes have the following IP addresses: ip_node_1 and
ip_node_2 (or you can use DNS names).

2. Assuming that during installation, an agent was set to communicate with ip_node_1,
to enable the agent to also communicate with cluster node ip_node_2:

Getting Started

74 Serena® Orchestrated Ops

3. In the server web interface, go to the Settings tab and click Network.

4. In the Network tab, click Create New Network Relay.

5. In the Create Network Relay dialog:

a. Enter a Name for the third server.

b. In the Host field, enter ip_node2

c. Enter a Port number that the agent will use to communicate with the server.

d. Check the Active check box.

e. Click Save.

6. Repeat this process for each cluster node.

SSL Configuration
SSL (Secure Socket Layer) technology enables clients and servers to communicate
securely by encrypting all communications. Data are encrypted before being sent and
decrypted by the recipient–communications cannot be deciphered or modified by third-
parties.

Serena Release Automation enables the server to communicate with its agents using SSL
in two modes: unauthenticated and mutual authentication. In unauthenticated mode,
communication is encrypted but users do not have to authenticate or verify their
credentials. Serena Release Automation automatically uses this mode for JMS-based
server/agent communication (you cannot turn this off). SSL unauthenticated mode can
also be used for HTTP communication. You can implement this mode for HTTP
communication during server/agent/agent relay installation, or activate it afterward, as
explained below.

Important: Serena Release Automation automatically uses SSL in
unauthenticated mode for JMS-based communications between the server and
agents (JMS is Serena Release Automation's primary communication method).
Because agent relays do not automatically activate SSL security, you must turn
it on during relay installation or before attempting to connect to the relay.
Without SSL security active, agent relays cannot communicate with the server
or remote agents.

In mutual authentication mode, the server, local agents, and agent relays each provide a
digital certificate to one another. A digital certificate is a cryptographically signed
document intended to assure others about the identity of the certificate's owner. Serena
Release Automation certificates are self-signed. When mutual authentication mode is
active, Serena Release Automation uses it for JMS-based server, local agents, and agent
relay communication.

Serena Release Automation Guide 75

To activate this mode, the Serena Release Automation server provides a digital certificate
to each local agent and agent relay, and each local agent and agent relay provides one to
the server. Agent relays, in addition to swapping certificates with the server, must swap
certificates with the remote agents that will use the relay. Remote agents do not have to
swap certificates with the server, just with the agent relay it will use to communicate with
the server. This mode can be implemented during installation or activated afterward (see
Property Settings for Mutual Authentication [page 76].

Note: When using mutual authentication mode, you must turn it on for the
server, agents, and agent relays, otherwise they will not be able to connect to
one another–if one party uses mutual authentication mode, they all must use it.

Configuring SSL Unauthenticated Mode for HTTP
Communications

To activate unauthenticated mode for HTTP:

1. Open the installed.properties file which is located in the server_install/conf/
server directory.

The installed.properties file contains the properties that were set during
installation.

2. Ensure that the install.server.web.always.secure property is set to Y.

3. Ensure that the install.server.web.ip property is set to the port the server
should use for HTTPS requests.

4. Save the file and restart the server.

Note: To complete unauthenticated mode for HTTP, contact Serena Support.

Configuring Mutual Authentication

To use mutual authentication, the server and agents must exchange keys. You export the
server key (as a certificate) and import it into the agent keystore, then reverse the
process by exporting the agent key and importing it into the server keystore. When using
an agent relay, the relay must swap certificates with the server and with the remote
agents that will use the relay.

When you install a server, the alias server (used for certificate key generation) is
assigned to the server. However, for each agent and agent relay for which you want to
configure mutual authentication, you must first create an alias. For more information see,
Adding an Alias to an Agent [page 77], or Adding an Alias to an Agent Relay [page 78]

Property Settings for Mutual Authentication

Before you can configure mutual authentication between a server and agent(s), or a
server, agent relay and agent(s), you must set the following properties.

Table 1. Property Settings Required Before Exchanging Keys table

Getting Started

76 Serena® Orchestrated Ops

Property Location Value

If not set during install:
server.mutual_auth

in the server installation directory
.serena\ra\conf\server\installed.properties file

true

server.jms.mutualAuth in the server installation directory
.serena\ra\conf\server\installed.properties file

true

For each agent, if not set during
install:

agent.mutual_auth

in the agent installation directory
[agent_installdir]\conf\agent\
→installed.properties file

true

For each agent:

locked/agent.mutual_auth

in the agent installation directory
[agent_installdir]\conf\agent\
→installed.properties file

true

For each agent relay:

agentrelay.jms_proxy.secure

in the relay's [agentrelay_installdir]\conf\
→agentrelay.properties file

true

For each agent relay:

agentrelay.jms_proxy.mutualAuth

in the relay's [agentrelay_installdir]\conf\
→agentrelay.properties file

true

Adding an Alias to an Agent

If you want to generate a certificate for an agent, you must first add an alias to the agent.

To add an alias to an agent:

Note: You must have administrative privileges to perform this procedure.

1. Make sure your agent machine JAVA_HOME environment variable points to the
directory where java is installed.

2. Open a shell and navigate to the agent install location \conf directory.

3. From within the agent's [install_location]\conf directory, run the following
command:

keytool -genkeypair -dname "cn=[alias_name]" -alias [alias_name]
-keypass changeit -keystore agent.keystore -storepass changeit
-keyalg RSA -keysize 1024 -validity 7305

where [alias_name] is the name you give the agent alias; we recommend using the
agent's name.

4. To check the result, run the command:

Serena Release Automation Guide 77

keytool -list -keystore agent.keystore

Adding an Alias to an Agent Relay

If you want to generate a certificate for an agent relay, you must first add an alias to the
agent relay.

To add an alias to an agent relay:

Note: You must have administrative privileges to perform this procedure.

1. Make sure your agent relay machine JAVA_HOME environment variable points to the
directory where java is installed.

2. Open a shell and navigate to the agent relay install location \conf\jms-relay
directory.

3. From within the agent relay's [install_location]\conf\jms-relay directory, run
the following command:

keytool -genkeypair -dname "cn=[alias_name]" -alias [alias_name]
-keypass changeit -keystore agentrelay.keystore -storepass changeit
-keyalg RSA -keysize 1024 -validity 7305

where [alias_name] is the name you give the agent relay alias; we recommend
using the agent relay's name.

4. To check the result, run the command:

keytool -list -keystore agentrelay.keystore

Mutual Authentication: Server and Agent(s)

Make sure your server and agent(s) are not running before you start this configuration.

To configure mutual authentication between a server and agent:

Important: Specific server and agent properties must be set prior to
configuring mutual authentication and exchanging keys (see Property Settings
for Mutual Authentication [page 76]).

1. Open a shell and navigate to the server install location \conf directory:

.serena\ra\conf>

2. Export the server key as a certificate by running:

keytool -export -keystore server.keystore -storepass changeit
-alias server -file server.crt

You should see the message:

Getting Started

78 Serena® Orchestrated Ops

Certificate stored in file server.crt

3. Copy the exported server.crt (certificate file) to the agent
[install_location]\[agent_name]\conf directory.

where [agent_name] is the unique name you gave the agent during install.

4. From within the agent's [install_location]\[agent_name]\conf directory, import
the server.crt file by running:

keytool -import -keystore sra.keystore -storepass changeit -alias server
-file server.crt -keypass changeit -noprompt

You should see the message:

Certificate was added to keystore

5. From within the agent's [install_location]\[agent_name]\conf directory, export
the agent key as a certificate by running:

keytool -export -keystore sra.keystore -storepass changeit
-alias [agent_alias] -file [agent_name].crt

The certificate is stored in the [agent_name].crt file.

Important: Before you export an agent key, you must first add an alias to
the agent (see Adding an Alias to an Agent [page 77]).

6. Copy the exported [agent_name].crt (certificate file) to the server installation
location \conf directory.

7. From within the server's install location .serena\ra\conf directory, import the
[agent_name].crt file by running:

keytool -import -keystore server.keystore -storepass changeit
-alias [agent_alias] -file [agent_alias].crt -keypass changeit -noprompt

You should see the message:

Certificate was added to keystore

8. For additional agents, repeat from step 5.

9. Start the server and agent(s).

Mutual Authentication: Server, Agent Relay, and Agent(s)

These instructions are for configuring mutual authentication for a server, agent relays,
and agents that communicate with the server through agent relay(s). Make sure your
server and agent(s) are not running before you start this configuration.

Serena Release Automation Guide 79

To configure mutual authentication between a server, agent relay and agent(s):

Important: Specific server, agent relay, and agent properties must be set prior
to configuring mutual authentication and exchanging keys (see Property
Settings for Mutual Authentication [page 76]).

1. Open a shell and navigate to the server install location \conf directory:

.serena\ra\conf>

2. Export the server key as a certificate by running:

keytool -export -keystore server.keystore -storepass changeit
-alias server -file server.crt

You should see the message:

Certificate stored in file server.crt

3. Copy the exported server.crt (certificate file) to the agent relay
[install_location]\[agentrelay_name]\conf\jms-relay directory.

where [agent-relay_name] is the unique name you gave the agent relay during
install.

4. From within the agent relay directory:

[install_location]\[agent-relay_name]\conf\jms-relay

import the server.crt file by running:

keytool -import -keystore agentrelay.keystore -storepass changeit
-alias server -file server.crt -keypass changeit -noprompt

You should see the message:

Certificate was added to keystore

Important: Before you can export an agent relay key, you must first add
an alias to the agent relay (see Adding an Alias to an Agent Relay [page
78]).

5. From within the agent relay directory:

[install_location]\[agent-relay_name]\conf\jms-relay

export the agent relay key as a certificate by running:

keytool -export -keystore agentrelay.keystore -storepass changeit
-alias [agent-relay_alias] -file [agent-relay_name].crt

You should see the message:

Getting Started

80 Serena® Orchestrated Ops

Certificate is stored in file [agent-relay_name].crt

6. Copy the exported [agent-relay_name].crt (certificate file) to the server
installation location .serena\ra\conf directory.

7. From within the server's install location .serena\ra\conf directory, import the
[agent-relay_name].crt file by running:

keytool -import -keystore server.keystore -storepass changeit
-alias [agent-relay_alias] -file [agent-relay_name].crt
-keypass changeit -noprompt

You should see the message:

Certificate was added to keystore

8. For an agent that is configured to connect to the agent relay, copy the exported
[agent-relay_name].crt (certificate file) to the agent
[install_location]\[agent_name]\conf directory.

where [agent_name] is the unique name you gave the agent during install.

9. From within the agent's [install_location]\[agent_name]\conf directory, import
the [agent-relay_name].crt file by running:

keytool -import -keystore sra.keystore -storepass changeit
-alias [agent-relay_alias] -file [agent-relay].crt
-keypass changeit -noprompt

You should see the message:

Certificate was added to keystore

10. From within the agent's [install_location]\[agent_name]\conf directory, export
the agent key as a certificate by running:

keytool -export -keystore sra.keystore -storepass changeit
-alias [agent_alias] -file [agent_name].crt

You should see the message:

Certificate is stored in file [agent_name].crt

Important: Before you can export an agent's certificate key, you must
first add an alias to the agent (see Adding an Alias to an Agent [page 77]).

11. Copy the exported [agent_name].crt (certificate file) to the agent relay
[install_location]\[agent-relay_name]\conf\jms-relay\ directory.

12. From within the agent relay [install_location]\[agent-relay_name]\conf\jms-
relay directory, import the [agent_name].crt file by running:

Serena Release Automation Guide 81

keytool -import -keystore agentrelay.keystore -storepass changeit
-alias [agent_alias] -file [agent_name].crt -keypass changeit -noprompt

You should see the message:

Certificate was added to keystore

13. To configure another agent that communicates with the server through this agent
relay, repeat from step 10.

Attention: For each agent, make sure you change the name of the -
alias argument [agent_alias], and the -file argument [agent_name].

14. Restart the server, agent relay, and agents.

Running Serena Release Automation
Both UNIX- and Windows-based installations require the Serena Release Automation
server and at least one agent. If you are using a Oracle or MySQL database, make sure
you have installed and configured the appropriate driver, see Database Installation [page
50].

Running the Server

1. Navigate to the server_installation\bin directory.

2. Run the run_server.cmd batch file (Windows), or start_server.cmd (UNIX/Linux).

Running an Agent

After the server has successfully started:

1. Navigate to the agent_installation\bin directory.

2. Run the run_sraagent.cmd batch file (Windows), or start_sraagent.cmd (UNIX/
Linux).

3. Once the agent has started, navigate to the Serena Release Automation web
application and display the Resources tab. If installation went well, the agent
should be listed with a status of Online.

Running an Agent Relay

After the server has successfully started:

1. Navigate to the agent_relay_installation\bin directory.

2. Run the run_agentrelay.cmd batch file (Windows), or start_agentrelay.cmd
(UNIX/Linux).

Start the agent relay before starting any agents that will communicate through it.

Getting Started

82 Serena® Orchestrated Ops

Accessing Serena Release Automation

1. Open a web browser and navigate to the host name you configured during
installation. For example, http://localhost:8080/serena_ra/

2. Log on to the server using the credentials (Username and Password) you set up
during the server installation.

Once you are logged in, you can change these on the Settings tab (see System
Settings [page 189]).

3. Activate the license.

A license is required in order for the agents to connect to the server. Without a
license, Serena Release Automation will be unable to run deployments. For
information about acquiring and activating a license, see Licenses [page 189].

Quick Start—helloWorld Deployment
This section gets you started by providing immediate hands-on experience using key
product features. The helloWorld walk-through demonstrates how to create a simple
deployment using out-of-the-box features.

Note: This section assumes you have installed the Serena Release Automation
server and at least one agent. For the walk-through, the agent can be installed
on the same machine where the server is installed. If the agent or server have
not been installed, see Installing Servers and Agents [page 46] for installation
information.

In outline, deployments are done by performing the following steps:

• Define Components

Components represent deployable artifacts: files, images, databases, configuration
materials, or anything else associated with a software project. Components have
versions which ensure that proper component instances are deployed. See
Components [page 101] for more information about creating components.

• Define Component Processes

Component processes operate on components, usually by deploying them. Each
component must have at least one component process defined for it. For helloWorld
you will create a single component that contains a number of text-type files
(artifacts), and define a simple process that moves—deploys—the artifacts.

• Define Application

An application brings together all deployment components by identifying its
components and defining a process to move them through a target environment (by
running component processes, for instance). See Applications [page 133] for more
information about creating applications.

• Configure Environment

An environment is a collection of resources that represent deployment
targets–physical machines, virtual machines, databases, J2EE containers, and so on.
Each application must have at least one environment defined for it.

Serena Release Automation Guide 83

• Identify Agent

Agents are distributed processes that communicate with the Serena Release
Automation server and perform the actual work of deploying artifacts. Generally, an
agent is installed on the host where the resources it manages reside. Agents are
associated with applications at the environment level.

helloWorld: Creating Components
Components contain the artifacts, such as files, images, and databases that you manage
and deploy. When creating a component, you:

1. Identify source type.

First, you define the artifacts' source type (all artifacts must be of the same type)
and identify where they are stored.

2. Import a version.

After you identify the artifacts, they are imported into the artifact repository,
CodeStation. Artifacts can be imported manually or automatically. When artifacts are
imported, they are assigned a version ID, which enables multiple versions to be kept
and managed. Snapshots, for example, can employ specific versions.

3. Define process.

The process defines how the component artifacts are deployed. A process is
designed by assembling plug-in steps. A plug-in step is a basic unit of automation.
Steps replace most deployment scripts and/or manual processes. Processes are
designed using the drag-and-drop process editor.

helloWorld Deployment
The helloWorld deployment moves some files on the local file system to another location
on the file system, presumably a location used by an application server. helloWorld is a
very simple deployment but it uses many key product features—features you will use
every day.

Plug-ins provide integration with many common deployment tools and application servers.
In addition to Start and Finish steps, each process has at least one step, which can be
thought of as a distinct piece of user-configurable automation. By combining steps,
complex processes can be easily created. Plug-ins are available for Subversion, Maven,
Tomcat, WebSphere, and many other tools.

helloWorld: A Note Before You Begin
You can read the walk-through without actually performing the steps, or you can perform
them as you read along. If you want to perform the steps as we go, do the following
before starting:

1. Create a directory somewhere on your system and name it: helloWorld.

2. Within this helloWorld directory, create a sub-directory and name it hello.

3. Within the subdirectory create and save five text-type files and name them
artifact1.txt, artifact2.txt, and so on.

Getting Started

84 Serena® Orchestrated Ops

These five files represent the artifacts that you will be deploying. You will be creating
a component that contains these files.

Note: If you want to perform the exercise steps, ensure that you have an active
agent installed.

helloWorld: Component Version
1. Display the New Component dialog Home > Components > New Component

Figure 1. New Component dialog

The initially displayed fields are the same for every source type. Other fields
appearing depend on the source type and are displayed after a value is selected in
the Source Config Type field.

2. Enter helloWorld in the Name field.

The name is used when assembling the application. If the component will be used by
more than one application, the name should be generic rather than project-specific.
For components that are project-specific, a name that conveys something
meaningful about the project should be used.

3. Enter a description in the Description field.

The optional description can be used to convey additional information about the
component. If the component is used by more than one application, for example,
entering "Used in applications A and B" can help identify how the component is used.
If you are unsure about what to enter, leave the field blank. You can always return
to the component and edit the description at any time.

For this exercise, ignore the Template field. Templates provide a way to reuse
commonly used component configurations. For information about templates, see
Component Templates [page 122].

4. Select File System (Versioned) from the Source Config Type field.

Serena Release Automation Guide 85

Selecting a value displays several fields required by the selected type.

Source Config Type

File System (Versioned) is one of the simplest configuration options and can be
used to quickly set-up a component for evaluation purposes, as we do here.

5. Complete this option by entering the path to the artifacts.

In our example, the artifacts are stored inside the subdirectory created earlier. File
System (Versioned) assumes that subdirectories within the base directory are
distinct component versions, which is why we placed the files (artifacts) inside a
subdirectory. File System (Versioned) can automatically import versions into
CodeStation. If a new subdirectory is discovered when the base directory is checked,
its content is imported and a new version is created.

6. Check the Import Versions Automatically check box.

When this option is selected, the source location will be periodically polled for new
versions. If this option is not selected, you will have to manually import a new
version every time one becomes available. The polling interval is controlled by the
Automatic Version Import Check Period (seconds) field on the Settings pane Home >
Settings > System. The default value is 15 seconds.

7. Ensure the Copy to CodeStation check box is selected.

This option, which is recommended and selected by default, creates a tamper-proof
copy of the component's artifacts and stores them in the embedded artifact
management system, CodeStation. If you already have an artifact repository, such
as AnthillPro or Maven, you might leave the box unchecked.

For this exercise, you can accept the default values for the remaining options and
save your work.

8. After the interval specified by the system settings, the initial component version (the
files inside the subdirectory created earlier) should be imported into CodeStation. To
ensure the artifacts were imported, display the Versions pane Home > Components >
helloWorld > Versions > version_name. This pane displays all versions for the
selected component. If things went well, the artifacts will be listed. The base path,

Getting Started

86 Serena® Orchestrated Ops

as you will recall, is C:\helloWorld. Within helloWorld is the single subdirectory
hello on my machine).

Imported Artifacts

helloWorld: Component Process
Once a component has been created and a version imported, a process to deploy the
artifacts—called a component process—is defined.

To Configure the helloWorld Component Process:

1. Display the Create New Process dialog for the helloWorld component Home >
Components > helloWorld > Processes > Create New Process.

Serena Release Automation Guide 87

Figure 1. Create New Process dialog

2. In the Create New Process dialog, enter a name in the Name field.

The name and description typically reflect the component's content and process
type.

3. Enter a meaningful description in the description field.

If the process will be used by several applications, you can specify that here.

4. Accept the default values for the other fields.

You might be wondering what the Default Working Directory field does. This field
points to the working directory (for temporary files, etc.) used by the agent running
the process. The default value resolves to
agent_directory\work\component_name_directory. The default properties work
for most components; you might need to change it if a component process cannot
be run at the agent's location.

When you finish, save your work.

So far you have created a place-holder for the actual process you will define next. The
name you gave the process is listed on the component's Process pane. A component can
have any number of processes defined for it.

helloWorld: Process Design
To complete the process you define the actual plug-in steps. In addition to the Start and
Finish steps, which are part of every process, a process must have at least one additional
step. The steps are defined with the Process Design pane. You define the steps by
dropping them onto the design area and arranging them in the order they are to be
executed.

To Define the helloWorld Process Steps:

1. Display the Process Design pane for the process created earlier Home > Components
> helloWorld > process_name

Getting Started

88 Serena® Orchestrated Ops

Figure 1. Process Design Pane

The steps are listed in the Available Plug-in Steps list-box. Take a moment to
expand the listings and review the available steps. Many commonly used plug-in
steps are available out-of-the-box.

2. In the Available Plug-in Steps box, expand the Serena Release Automation menu
item Repositories > Artifact > Serena Release Automation.

3. Drag the Download Artifacts step onto the design space and release it. For now,
don't worry about where the step is released—a step's position in the workflow is
defined after its parameters are configured.

Serena Release Automation Guide 89

Figure 2. Adding a Step to the Process

The Edit Properties dialog is displayed when the mouse-pointer is released over the
design space.

Getting Started

90 Serena® Orchestrated Ops

Figure 3. Edit Properties Dialog

This dialog displays all configurable parameters associated with the selected step.

For this exercise, we can achieve our goal by entering data into a single
field—Directory Offset. Recall that the goal for this ambitious deployment is to move
the source files in the base directory to another location. As you might guess,
several methods for accomplishing this are available. Pointing the Directory Offset
field to the target location is one of the simplest.

4. In the Directory Offset field, enter the path to the target directory. Because Serena
Release Automation can create a directory during processing, you specify any target
directory. I entered c:\hello which did not exist on my system, and let Serena
Release Automation create it for me.

If the field is left blank, the process will use the working directory defined earlier.
Entering the path overrides the previous value and will cause the source files to be
moved—deployed—to the entered location when the process runs. The default value
would move (download) the files to
agent_directory\work\component_name_directory.

After entering the target path, save your work and close the dialog box.

5. Next, the step must be positioned within the process workflow. There's no
requirement that a step be positioned immaculately after it's created; you could
place several more before defining their positions, but because this is the only step
we are adding, it makes sense to define its position now.

A step's position in the workflow is defined by dragging connection arrows to/from it.
The arrows define the direction of the workflow.

Serena Release Automation Guide 91

Hover the mouse pointer over the Start step to display the connection tool, as
shown in the following illustration. Each step has a connection tool which is used to
connect it to other steps.

Figure 4. Connection Tool

Grab the connection tool and drag it over the Download Artifacts step then release
it. A connection arrow connects the two steps. The arrow indicates the direction of
process flow—from the originating step to the destination step.

Figure 5. Finished Connection

6. Complete the process by connecting the Download Artifacts step to the Finish
step. A step can have more than one arrow originating from it and more than one
connecting to it.

Getting Started

92 Serena® Orchestrated Ops

Figure 6. Completed Process

7. Save the component by using the Save tool on the Tools menu.

Once the process steps are defined, the final task is to define an application that uses the
component—and the component process you just created.

helloWorld: Application
To deploy the helloWorld component, you must create an application. An application, as
used by Serena Release Automation, is a mechanism that deploys components into
environments using application processes—processes similar to the component process
just defined.

To create an application, you: identify the components it controls (an application can
manage any number of components); define at least one environment into which the
components will be deployed; and create a process to perform the work. An environment
maps components to agents and handles inventory, among other things.

An application process is similar to but not identical with a component process. While
application processes consists of steps configured with the process editor, like component
processes, they are primarily intended to direct underlying component processes and
orchestrate multi-component deployments. The Install Component step, which we will use
shortly, enables you to select a component process from among those defined for each
component (remember that a component can have more than one process defined for it).

You perform a deployment by running an application process for a specific environment.

You might be wondering why you need to create an application-level process when the
process you created for the component should be able to perform the deployment by
itself. While individual component processes can be run outside an application process, an
environment must still be defined (environments are defined at the application level) and
an agent associated with it. For a single-component deployment like helloWorld, an
application-level process might not be required. You might also want to skip an
application-level process when you are testing or patching a component. But for non-

Serena Release Automation Guide 93

trivial deployments, and especially for deployments that have more than one component,
you will want to create one or more application-level processes.

helloWorld: Creating an Application

To create an application:

1. Display the Create New Application dialog Home > Applications > Create New
Application [button].

2. Enter a name, for example, helloWorld_application, and an (optional)
description.

There are no naming requirements. However the number of associated items, for
example components, processes, applications, and environments can become large;
so, we recommend you use a naming scheme that makes it easy to identify related
items.

3. For the Notification Scheme, accept the default value of None from the drop-down,
and save the application.

Serena Release Automation integrates with LDAP and e-mail servers which enables it
to send event-based notifications. For example, the default notification scheme will
send an e-mail (if an email server has been configured) when a deployment finishes.
Notifications can also play a role in deployment approvals (see Creating Notification
Templates [page 194]).

Adding the helloWorld Component to the Application

After the application is saved, we identify the component—helloWorld—it will manage.
While we have only one component to deploy, an application can manage any number of
components.

1. Display the Add a Component dialog for the application just created,
helloWorld_application in my case (Home > Applications >
helloWorld_application > Components > Add Component [button]).

2. Select helloWorld from the Select a Component drop-down list box, then save your
selection.

The simple act of selecting a component accomplishes a lot. The the component
processes defined for the component become available to the application, for
example, and many application process steps will have default values set to values
defined by the helloWorld component.

helloWorld: Adding an Environment to the Application

Before an application can run, it must have at least one environment created for it. An
environment defines the agents used by the application, among other things.

1. Display the Create New Environment dialog Home > Applications >
helloWorld_application > Create New Environment.

Getting Started

94 Serena® Orchestrated Ops

Figure 1. Create New Environment

2. Use the Create New Environment dialog to define the environment:

• The value in the Name field will be used in the deployment.

• If you check the Require Approvals check box, approvals will be enforced. See
Deployments [page 152] for information about the approval process. This is our
first deployment so an uncontrolled environment will do fine–leave the box
unchecked.

• Selecting a color provides a visual identifier for the environment in the UI.
Typically, each environment will be assigned its own color.

• Leave the Inherit Cleanup Settings check box checked. Clean-up refers to
archiving component versions. When a component is archived, its artifacts are
combined into a ZIP file and saved. The corresponding component is removed
form CodeStation. When checked, settings are inherited from the system
settings, otherwise they are inherited from the application's components.

3. Next, add an agent that will execute the application's process steps. Display the Add
a Resource dialog Applications > helloWorld_application > Environments >
Environment: name > Component Mappings > Add a Resource.

Select any of the agents that were created when Serena Release Automation was
installed.

While our example uses only a single resource, deployments can use many
resources and resource groups. Resource groups provide a way to combine
resources, which can be useful when multiple deployments use overlapping
resources. See Resources [page 127] for information about resource groups.

Serena Release Automation Guide 95

Figure 2. Component Mappings

helloWorld: Adding a Process to the Application

Now that our application has an environment, we can create an application-level process
that will perform the deployment.

1. Display the Create an Application Process dialog Applications >
helloWorld_application > Processes > Create New Process.

2. Enter a name in the Name field.

Accept the default values for the other fields:

• The Required Application Role drop-down field is used to restrict who can run this
process. The default value, None, means anyone can run the process. The
available options are derived from the Serena Release Automation Security
System. For information about security roles, see Serena Release Automation
Security [page 175]

• The Inventory Management field determines how inventory for the application's
components are handled. If you want to manually control inventory, you would
select the Advanced option. See Inventory [page 201], for information about
inventory management.

3. Save your work when you are finished.

Designing the Process Steps

To create an application-level process, you define the individual steps as you did earlier
when you used the Process Design pane to create the helloWorld component process (see
Component Processes [page 109]).

1. Display the Process Design pane Applications > application_name > Processes
> process_name. The out-of-box process steps are listed in the Add a Component
Process list box.

Getting Started

96 Serena® Orchestrated Ops

2. Drag the Install Component step onto the design area and release. The Edit
Properties dialog is displayed.

Figure 1. Edit Properties dialog

Select a component from the Component drop-down list box. If you followed the
Quick Start, the helloWorld component will be listed.

If we wanted this application to install multiple components, we could add a
separate Install Component step for each one.

3. Use the Component Process list box to select the component process you created
earlier. All processes defined for the selected component are listed. If the component
had another process that deployed it to a different location, you could add another
Install Component step that used that process—simultaneously installing the
component into two different locations.

Accept the default values for the other fields (see Applications [page 133] for
information about the other fields), and click Save.

4. Connect the step to the Start and Finish steps.

Serena Release Automation Guide 97

Figure 2. Finished Application Process

5. Save the process by clicking the Save tool on the Tools bar.

Running the Application

Now that the component, environment, and process are complete, you can run the
application.

1. On the Application pane, click the Request Process button for the environment you
created earlier.

Getting Started

98 Serena® Orchestrated Ops

Figure 1. Request Process

2. On the Run Process dialog:

a. Select the process you created from the Process drop-down list box. Applications
can have more than one process defined for them.

b. Select Latest Version from the Version drop-down list box. This option ensures
that the latest (or first and only) version is affected.

Serena Release Automation Guide 99

Figure 2. Run Process Dialog

3. Click Submit to run the application.

The Application Process pane is displayed. This pane displays the application's
status.

Figure 3. Application Process Request

Take a few moments to examine the information on this pane; hopefully, you will
see a Success message.

4. To see additional information (Output Log, Error Log, Application Properties), click
the Details link.

Getting Started

100 Serena® Orchestrated Ops

Using Serena Release Automation
This documentation contains the following information about using Serena Release
Automation:

• Components [page 101]

• Resources [page 127]

• Agents [page 130]

• Applications [page 133]

• Deployments [page 152]

• Reports [page 156]

Components
Components represent deployable items along with user-defined processes that operate
on them, usually by deploying them. Deployable items, or artifacts, can be files, images,
databases, configuration materials, or anything else associated with a software project.
Artifacts can come from a number of sources: file systems, build servers such as
AnthillPro, as well as many others. When you create a component, you identify the source
and define how the artifacts will be brought into Serena Release Automation.

Component Versions and the CodeStation Repository
After defining a component's source and processes, you import its artifacts into Serena
Release Automation's artifact repository CodeStation. Artifacts can be imported
automatically or manually. By default, a complete copy of an artifact's content is imported
into CodeStation (the original artifacts are untouched). Each time a component is
imported, including the first time, it is versioned. Versions can be assigned automatically
by Serena Release Automation, applied manually, or come from a build server. Every time
a component's artifacts are modified and reimported, a new version of the component is
created.

Component Processes
A component process is a series of user-defined steps that operate on a component's
artifacts. Each component has at least one process defined for it and can have several. A
component process can be as simple as a single step or contain numerous relationships,
branches, and process switches. Component processes are created with Serena Release
Automation's process editor. The process editor is a visual drag-and-drop editor that
enables you to drag process steps onto the design space and configure them as you go.
As additional steps are placed, you visually define their relationships with one another.
Process steps are selected from a menu of standardized steps. Serena Release
Automation provides steps for several utility processes, such as inventory management,
and workflow control. Additional process steps are provided by plug-ins. A component
process can have steps from more than one plug-in. See Plug-ins [page 207].

Additionally, you can create processes and configure properties and save them as
templates to create new components. See Component Templates [page 122].

Serena Release Automation Guide 101

Creating Components
In general, component creation is the same for all components. When creating a
component, you:

1. Define source type.

You name the component and identify the artifacts' source, such as AnthillPro, a file
system, or Subversion. A component can contain any number of artifacts but they
must all share the same source.

2. Assemble process(es).

A process defines what Serena Release Automation does with the component's
artifacts. A process might consist of any number of steps, such as starting and
stopping servers, and moving files. In addition to deploying, other processes can
import artifacts and perform various utility tasks.

To reiterate, then, a component consists of artifacts all sharing the same source type, plus
one or more processes. In addition to hand-crafting a component, you can use a template
to create one (see Component Templates [page 122]), or you can import a component
directly (see Importing/Exporting Templates [page 123]).

To create a component:

1. Display the Create New Components dialog Home > Components > Create New
Component. Several fields are the same for every source, while others depend on the
source type selected with the Source Config Type field.

2. Define standard parameters. The fields in the following table are available for every
source type. If you select a value in the Source Config Type field, fields specific to
the selected type are also displayed.

Fields Available for All Component Source Types table

Field Description

Name Identifies the component; appears in many UI features.
Required.

Description The optional description can be used to convey additional
information about the component. If the component is used by
more than one application, for example, entering "Used in
applications A and B" can help identify how the component is
used.

Using Serena Release Automation

102 Serena® Orchestrated Ops

Field Description

Template A component template enables you to reuse component
definitions; components based on templates inherit the
template's source configuration, properties, and process. Any
previously created templates are listed. A component can have a
single template associated with it. The default value is None.

If you select a template, the Template Version field is displayed
which is used to select a template version. By controlling the
version, you can roll-out template changes as required. The
default value is Latest Version which means the component will
automatically use the newest version (by creation date). See
Creating a Component Template [page 123].

Note: If you select a template that has a source
configured for it, the dialog box will change to reflect
values defined for the template. Several fields,
including the Source Config Type field, will become
populated and locked.

Source
Config Type

Defines the source type for the component's artifacts; all artifacts
must have the same source type. Selecting a value displays
additional fields associated with the selection. Source-dependent
fields (see Basic Fields [page 203]) are used to identify and
configure the component's artifacts. If you selected a template,
this field is locked and its value is inherited from the template.

Import
Versions
Automatically

If checked, the source location is periodically polled for new
versions; any found are automatically imported. The default
polling period is 15 seconds, which can be changed with the
System Settings pane. If left unchecked, you can manually create
versions by using the Versions pane. By default, the box is
unchecked.

Copy to
CodeStation

This option—selected by default—creates a tamper-proof copy of
the artifacts and stores them in the embedded artifact
management system, CodeStation. If unchecked, only meta data
about the artifacts are imported. Serena recommends that the
box be checked.

Default
Version Type

Defines how versions are imported into CodeStation. Full means
the version is comprehensive and contains all artifacts;
Incremental means the version contains a subset of the
component's artifacts. Default value is: Full. Required.

Serena Release Automation Guide 103

Field Description

Inherit
Cleanup
Settings

Determines how many component versions are kept in
CodeStation, and how long they are kept. If checked, the
component will use the values specified on the System Settings
pane. If unchecked, the Days to Keep Versions (initially set to -1,
keep indefinitely) and Number of Versions to Keep (initially set to
-1, keep all) fields are displayed, which enable you to define
custom values. The default value is checked.

3. If you select a source type, enter values into the source-specific field. See Basic
Fields [page 203] for information about the source types and parameters.

4. When finished, save your work. Saved components are listed in the Component
pane.

Importing/Exporting Components

Components can be imported and exported. Importing/exporting can be especially useful
if you have multiple Serena Release Automation servers, for example, and need to quickly
move or update components.

Exporting Components

Exporting a component creates a JSON file (file extension json) that contains the
component's source configuration information, properties, and processes. For information
about JSON, see www.json.org.

To export a component:

On the Components pane Home > Components, click the Export link in the Actions field.
You can load the file into a text editor, or save it. If you save it, a file is created with the
same name as the selected component, for example, helloWorld.json.

Importing Components

When you import a component, you can create an entirely new component or upgrade an
existing one. Additionally, if the imported component was created from a template, you
can use it or create a new one.

Note: If the imported component has the Import Versions Automatically
parameter set to true, the new component will automatically import component
versions as long as the artifacts are accessible to the importing server.

To Import a Component

1. Display the Import Component dialog Components > Import Component [button].

2. Enter the path to the JSON file containing the component definition or use the
Browse button to select one.

3. If you want to upgrade an existing component, check the Upgrade Component check
box. To create a new component, leave the box unchecked.

Using Serena Release Automation

104 Serena® Orchestrated Ops

http://www.json.org/

If the component's name in the JSON file (not the name of the file itself) matches an
existing component, the component's parameters are updated with the new values,
and new items—such as processes—are added. If the name of the component is not
found, the command has no effect.

Note: The component's name is the first parameter in the JSON file; for
example,

"name": "helloWorld",

4. If the imported component was originally created from a template, use the
Component Template Upgrade Type drop-down box to specify how you want to use
the template. For these options, the template must be on the importing server. If
the imported component was not created from a template, these options are
ignored.

• To use the imported component's template, select Use Existing Template. The
new component will be an exact copy of the imported one and contain a pointer
to the imported component's template. This option is especially useful if you are
importing a lot of components based on the same template.

If you are upgrading, the component will also point to the imported template.

• To create a new template, select Create New Template. The new component will
be an exact copy of the imported one and contain a pointer to the newly created
template (which is based on the imported component's template).

If you are upgrading a component, a new template is also created used.

• When you want to create a fresh installation and ensure a template is not on the
importing server, select Fail if Template Exists. If you are creating a component,
it will create both a new component and template unless the template already
exists, in which case the component is not imported.

If you are upgrading a component, the upgrade will fail if the imported
component's template already exists.

• To ensure the template is on the importing server, select Fail if Template Does
Not Exist. If you are creating a component, it will create both a new component
and template unless the template does not exist, in which case the component is
not imported.

If you are upgrading a component, the upgrade will fail if the imported
component's template does not exist on the importing server.

• To upgrade the template, select Upgrade if Exists. This option creates a new
component and upgrades the template on the importing server. If the template
does not exist, a new one is created.

5. Click Submit.

Component Properties

There are three types of component properties available: custom, environment, and
version (another type, component, is defined by template and becomes part of any
component created from the template, see Component Template Properties [page 124]).
Property versions (changes) are maintained and remain available.

Serena Release Automation Guide 105

The three types can be defined on the component's Properties pane Components >
[selected component] > Properties. The three types are described in the Component
Properties table.

Component Properties table

Property
Type

Description

Properties Custom property; can be used in scripts and plug-ins. Properties
inherited from templates cannot be modified on the component level.

Environment Available to environments that use the component. The property will
appear on the environment's Component Mappings pane Applications
> [selected application] > Environments > selected
environment] > Component Mappings, see Application Environments
[page 138].

Each property must have a type:

• Text

Enables users to enter text characters.

• Text Area

Enables users to enter an arbitrary amount of text, limited to
limited to 4064 characters.

• Check Box

Displays a check box. If checked, a value of true will be used;
otherwise the property is not set.

• Select

Requires a list of one or more values which will be displayed in a
drop-down list box. Enables a single selection.

Note: Not currently implemented.

• Multi Select

Requires a list of one or more values which will be displayed in a
drop-down list box. Enables multiple selections.

• Secure

Used for passwords. Similar to Text except values are redacted.

Using Serena Release Automation

106 Serena® Orchestrated Ops

Property
Type

Description

Version Available to every component version Components > [selected
component] > Versions > [selected version] > Properties.
Values can be set at the individual version level. Each property must
have a type (described above).

Component Versions
Each time a component's artifacts are imported into the repository, including the first
time, it is versioned. Versions can be assigned automatically by Serena Release
Automation, applied manually, or come from a build server. Every time a component's
artifacts are modified and reimported, a new version of the component is created. So a
component might have several versions in CodeStation and each version will be unique.

A version can be full or incremental. A full version contains all component artifacts; an
incremental version only contains artifacts modified since the previous version was
created.

Importing Versions Manually

1. Display the Version pane for the component you want to use Components > [select
component] > Versions.

Component Version Pane

All versions statuses come from active/inactive Source Config Type field.

2. Enter helloWorld in the Name field.

Display the Import.

Serena Release Automation Guide 107

3. Enter a description in the Description field.

The optional description can be used to convey additional information about the
component. If the component is used by more than one application, for example,
entering "Used in applications A and B" can help identify how the component is used.
If you are unsure about what to enter, leave the field blank. You can always return
to the component and edit the description at any time. In an attempt to appear hip,
I entered Euro store for my component.

For this exercise, ignore the Template field. Templates provide a way to reuse
commonly used component configurations. For information about templates, see
Component Templates [page 122].

4. Select File System (Versioned) from the Source Config Type field.

Selecting a value displays several fields required by the selected type.

Source Config Type

File System (Versioned) is one of the simplest configuration options and can be
used to quickly set-up a component for evaluation purposes, as we do here.

5. Complete this option by entering the path to the artifacts.

In our example, the artifacts are stored inside the subdirectory created earlier. File
System (Versioned) assumes that subdirectories within the base directory are
distinct component versions, which is why we placed the files (artifacts) inside a
subdirectory. File System (Versioned) can automatically import versions into
CodeStation. If a new subdirectory is discovered when the base directory is checked,
its content is imported and a new version is created.

6. Check the Import Versions Automatically check box.

When this option is selected, the source location will be periodically polled for new
versions. If this option is not selected, you will have to manually import a new
version every time one becomes available. The polling interval is controlled by the
Automatic Version Import Check Period (seconds) field on the Settings pane (Home
> Settings > System. The default value is 15 seconds.

Using Serena Release Automation

108 Serena® Orchestrated Ops

Importing Versions Automatically

When this option is selected, the source location is periodically polled for new versions;
any found are automatically imported. The default polling period is 15 seconds, which can
be changed with the System Settings pane, see System Settings [page 189]).

Component Version Statuses

Component version statuses are user-managed values that can be added to component
versions. Once a status is added to a version, the value can be used in component
processes or application gates (see Application Gates [page 149]).

Version statuses can be applied to a component version though the user interface
Components > [selected component] > Versions > [selected version] > Add a
Status [button], or by the Add Status to Version plug-in step.

Serena Release Automation-provided statuses are defined in an XML file which you can
freely edit to add your own values (see Structure of the default.xml File [page 151]).

Deleting Component Versions

You can delete any component version. To delete a version, use the Delete action for the
version Components > [selected component] > Versions > [selected version] >
Delete. Deleting a version removes associated meta data from the repository; original
artifacts are unaffected.

Inactivating Component Versions

Inactive component versions remain in the repository (unlike deleted versions) but cannot
be deployed. To render a component version inactive, use the Inactivate action for the
version Components > [selected component] > Versions > [selected version] >
Inactivate.

To make an inactive version active, use the Show Inactive Versions check box and the
Activate action.

Component Change Logs

Change logs provide information about modifications to components. To see change
details, display the log for a selected component-related activity Home > Components >
Changes [selected component] > Changes > Changes [action for selected item].
Information for any change that triggered a Commit ID is displayed.

Component Processes
A component process is a series of user-defined steps that operate on a component's
artifacts. Each component has at least one process defined for it and can have several.
Component processes are created with Serena Release Automation's process editor. The
process editor is a visual drag-and-drop editor that enables you to drag process steps
onto the design space and configure them as you go. Process steps are selected from a
menu of standard steps. See Process Editor [page 111]

Serena Release Automation provides steps for several utility processes such as inventory
management and workflow control. Additional process steps are provided by plug-ins.
Out-of-the-box, Serena Release Automation provides plug-ins for many common

Serena Release Automation Guide 109

processes, such as downloading and uploading artifacts, and retrieving environment
information. See Plug-ins [page 207].

A frequently used process can be saved as a template and applied to other components
(see Component Templates [page 122]).

Configuring Component Processes

A component process is created in two steps: first, you configure basic information, such
as name; second, you use the process editor to assemble the process.

To configure a component process:

1. Display the Create New Process dialog Home > Components > Component:
component_name > Create New Process).

2. The dialog's fields are described in the following table.
Table 1. Create New Process Fields table

Field Description

Name Identifies the process; appears in many UI elements. Required.

Description The optional description can be used to convey additional
information about the process.

Process
Type

Required. Defines the process type. Available values are:

• Deployment: deploys a component version to the target
resource and updates the inventory after a successful
execution.

• Configuration Deployment: configuration-only deployment
with no component version or artifacts—simply applies the
configuration (using properties, or configuration templates) to
the target agent and updates the resource configuration
inventory afterwards.

• Uninstall: standard uninstall that removes a component
version from a target resource and the resource's inventory.

• Operational (With Version): operational process which does
not add or remove any artifacts or configuration; runs arbitrary
steps given a component version. Useful when you want to
start or stop some service for a previously deployed component
version.

• Operational (No Version Needed): same as the previous
type, but does not require a component version.

Using Serena Release Automation

110 Serena® Orchestrated Ops

Field Description

Inventory
Status

Required. Status applied to component versions after being
successfully executed by this process. Active indicates the
component version is deployed to its target resource; Staged
means the component version is in a pre-deployment location. The
status appears on the Inventory panes for the component itself and
environments that ran the process.

Default
Working
Directory

Required. Defines the location used by the agent running the
process (for temporary files, etc.). The default value resolves to
agent_directory\work\component_name_directory. The default
properties work for most components; you might need to change it
if a component process cannot be run at the agent's location.

Required
Component
Role

Restricts who can run the process. The available options are
derived from the Serena Release Automation security system. The
default value is None, meaning anyone can run the process. For
information about security roles, see Serena Release Automation
Security [page 175].

3. Save your work when you are finished. The process is listed on the Processes pane
for the associated component.

Process Editor
After configuring a process with the Create New Process dialog, use the process editor to
assemble the process.

Displaying the Process Editor

To access the process editor:

1. On the Component: name pane, click the Processes tab.

2. Click on the name of the process you want to edit.

Component Processes

Serena Release Automation Guide 111

The Process Design pane is displayed.

Process Design Pane

Using Serena Release Automation

112 Serena® Orchestrated Ops

Available steps are listed in the Available Plug-in Steps list. Serena Release Automation
provides several utility steps and plug-ins which are highlighted in Displaying the Process
Editor [page 111]. This figure also shows several user-installed plug-ins.

Using the Process Editor

When the Process Design pane opens, the Design view displays. Processes are
assembled on the Design view. Several other views can be displayed by clicking the
associated tab:

Available Views table

Tab/
View

Description

Edit Displays the Edit view where you can change process parameters. See
Component Processes [page 109].

Properties Displays the Properties view where you can create and change process
properties.

Serena Release Automation Guide 113

Tab/
View

Description

Changes Displays the Process Changes view. This view provides a record for
every process change–property add or delete, and process save or delete.

Processes are assembled by dragging individual steps onto the design space, configuring,
and then connecting them. When a step is dragged onto the design space, a pop-up
displays that is used to configure the step. Once configured and the pop-up closed, you
define relationships between steps by dragging connection handles between associated
steps.

Typical Process Step

Graphically, each step (except for the Start step which cannot be deleted or edited) is the
same and provides:

Anatomy of a Step table

Item Description

edit tool displays the step configuration pop-up where you can modify
configuration parameters

delete tool removes the step from the design space

resize
handle

enables you to resize the step graphic

connection
tool

used to create connections between steps

Note: If you delete a step, its connections (if any) are also deleted.

Using Serena Release Automation

114 Serena® Orchestrated Ops

Adding Process Steps

To add a step:

1. In the Available Plug-in Steps list, using your mouse drag the step you want to
use onto the design space.

The cursor changes to the step tool.

2. Release the step tool over the design space.

Figure 1. Adding a Step

The Edit Properties pop-up displays.

Because connections are created after configuring the step's properties, you can
place the step anywhere on the design space. Steps can be dragged and positioned
at any time. See Plug-ins [page 207] for information about configuring specific
steps.

Serena Release Automation Guide 115

Figure 2. Typical Edit Properties Pop-up

Configuration dialogs are tailored to the selected step; only parameters associated
with the step type are displayed.

3. After configuring the step's properties, to save the step click Save.

The step is on the design space and ready to be connected to other steps.

4. If you want to remove the step from the design space, click Cancel.

You can add connections immediately after placing a step, or place multiple steps
before defining connections.

Connecting Process Steps

Connections control process flow. The originating step will process before the target step.
Creating a connection between steps is a simple process; drag a connection from the
originating step to the target step. Connections are formed one at a time between two
steps, the originating step and the target step.

To create a connection:

1. Hover your mouse pointer over the step that you want to use as the connection's
origin.

The pointer changes to the connection tool.

Using Serena Release Automation

116 Serena® Orchestrated Ops

Connection Tool

2. Drag the connection tool over the target step.

When the target step is highlighted, release the mouse to create a connection.

Dragging the Connection Over a Target Step

3. Release the connection tool over the target step to complete the connection.

Completed Connection

Serena Release Automation Guide 117

Each connection has a connection delete tool, conditional flag, and might have
others depending on the originating step. Remove a connection by clicking on the
delete tool.

Process Properties

A processing property is a way to add user-supplied information to a process. A running
process can prompt users for information and then incorporate it into the process.
Properties are defined with the Edit Property dialog.

To define a property:

1. On the Properties tab, click the Add Property button.

Edit Properties Dialog

2. In the Edit Properties dialog, enter a name in the Name field.

3. Optional. Enter a description in the Description field.

Using Serena Release Automation

118 Serena® Orchestrated Ops

4. Enter a label in the Label field.

The label will be associated with the property in the user interface.

5. If the property is required, check the Required check box.

Default value is unchecked–not required.

6. Specify the type of expected value with the Type drop-down list box.

Supported types are: text, text area, check box, select, multi select, and
secure. Default type is text.

7. In the Default Value field, enter a default value (if any).

8. To save your work, click the Save button. To discard changes, use the Cancel
button.

To use a property in a process, reference it when you configure a step that uses it (see
Component Processes [page 109]).

Switch Steps and Conditional Processes

Every connection (except connections from the Start step) has a delete tool and
conditional flag. The conditional flag enables you to set a condition on a connection. The
condition refers to the processing status of the originating step–success or failure.
Possible flag conditions are:

success

The process completed successfully.

fail

The process did not finish successfully.

both

Accept either status.

By default, all connections have the flag set to checked (true), meaning the originating
step must successfully end processing before the target step starts processing.

To change a flag's value, cycle through possible values by clicking the flag.

Serena Release Automation Guide 119

Process with Switch Step

A switch step is a utility step supplied by Serena Release Automation that enables process
branching based on the value of a property set on the step. The accompanying figure
illustrates a switch step. In this case, the switch property is version.name. The
connections from the switch step represent process branches dependent on the value of

Using Serena Release Automation

120 Serena® Orchestrated Ops

version.name. In this example, regardless of which branch is taken, the process will
proceed to the Run WLDeploy step.

Note: Run WLDeploy has success and fail conditions. See Plug-ins [page 207]
for information about configuring specific steps.

Note: If a step has multiple connections that eventually reach the same target
step, determining whether the target will execute depends on the value of the
intervening flags. If all of the intervening connections have success flags, the
target will only process if all the steps are successful. If the intervening
connections consist of an assortment of success and fail flags, the target will
process the first time one of these connections is used.

For a process to succeed, execution must reach a Finish step. If it does not end with
Finish, the process will fail every time.

Component Manual Tasks
A component manual task is a mechanism used to interrupt a component process until
some manual intervention is performed. A task-interrupted process will remain suspended
until the targeted user or users respond. Typically, manual tasks are removed after the
process has been tested or automated.

Similar to approvals, triggered tasks alert targeted users. Alerts are associated with
component-, environment-, or resource-defined user roles. Affected users can
respond—approve—by using the Work Items pane (see Work Items [page 147]). Unlike
approvals, manual tasks are incorporated within a component process.

Creating Component Manual Tasks

To create a task:

1. Display the Create New Task Definition dialog Components > [selected
component] > Tasks > Create New Task Definition [button].

2. Name the task then select a template from the Template Name field.

The individual tasks map to the notification scheme used by the application (see
Creating Notification Templates [page 194]). If a scheme is not specified, the default
scheme is used. The available notification schemes are:

• ApplicationDeploymentFailure

• ApprovalCreated

• TaskCreated

• ProcessRequestStarted

• DeploymentReadied

• ApplicationDeploymentSuccess

• Approval Failed

Serena Release Automation Guide 121

Using Component Manual Tasks

Component manual tasks are implemented with the Manual Task component process step.
Use the step to insert a manual task trigger into a component process.

Component Manual Task Properties

Field Description

Name Typically the name and description correspond to the component
process.

Task
Definition

Used to select a user-defined task, as described above.

Component
Role

Select the role expected to respond. The user mapped to this role will
have to respond to the generated work item before the process can
continue.

Environment
Role

Select the role expected to respond. The user mapped to this role will
have to respond to the generated work item before the process can
continue.

Resource
Role

Select the role expected to respond. The user mapped to this role will
have to respond to the generated work item before the process can
continue.

If multiple roles are selected, all affected users will have to respond before the process
can continue. For information about notification schemes, see Creating Notification
Templates [page 194], and for information about creating component proceses see
Process Editor [page 111].

Post-Processes
When a plug-in step finishes processing, its default post-processing element is executed.
The post-processing element is defined in the plug-in's XML definition, see Creating Plug-
ins [page 209].

You can override the default behavior by entering your own script into the step's Post
Processing Script field. A post-processing script can contain any valid JavaScript code.
Although not required, it's recommended that scripts be wrapped in a CDATA element.

See the The <post-processing> Element [page 215] for more information.

Component Templates
There are two types of templates available:

component template

Enables you save and reuse component processes and properties and create new
components from them; template-based components inherit the template properties
and process(es).

Using Serena Release Automation

122 Serena® Orchestrated Ops

configuration template

Typically used to save server or property configurations.

Creating a Component Template

To create a template:

1. Display the Create New Component Template dialog Components > Templates >
Create New Template [button].

2. Enter the template's name in the Name field.

3. Enter a description in the Description field.

The optional description can be used to convey additional information about the
template.

4. Select a plug-in from the Status Plug-in field.

If you previously created any status-related plug-ins, they will be listed here. The
default value is Default, meaning that the template will have Serena Release
Automation-supplied steps available for use.

5. Select the source for the artifacts from the Source Config Type drop-down list.

Selecting a value other than the default None, displays additional fields associated
with your selection. Source-dependent fields are used to identify and configure the
artifacts. If you select a source, components based on the template will use the
same source (see Basic Fields [page 203]).

Note: If you select a source, any properties you configure will be set for
any components created with the template.

6. Click the Save button to save the template.

Saved templates are listed in the Component Templates pane.

You create a process for the template in the same way processes are created for
components. For information about creating component processes, see Component
Processes [page 109].

Importing/Exporting Templates

Templates can be imported and exported.

Exporting Templates

Exporting a template creates a JSON file (file extension json) that contains the template's
configuration information, properties, and processes.

To export a template:

• On the Component Templates pane Components > Templates, click the Export link
in the Actions field. You can load the file into a text editor, or save it. If you save it,
a file is created with the same name as the selected component, for example,
helloWorldTemplate.json.

Serena Release Automation Guide 123

Importing Templates

When you import a template, you can create an entirely new template or upgrade an
existing one.

To import a template:

1. Display the Import Template dialog Components > Templates > Import Template
[button]).

2. Enter the path to the JSON file containing the template or use the Browse button to
select one.

3. If you want to upgrade an existing template, check the Upgrade Template check
box. To create a new template, leave the box unchecked.

If the template's name in the JSON file (not the name of the file itself) matches an
existing template, the template will be upgraded. If the name is not found, the
command has no effect.

Note: The template's name is the first parameter in the JSON file; for
example,

"name": "helloWorldTemplate",

4. Click Submit.

Component Template Properties

Component template properties ensure that every component created from a template
has the same properties. The three types of available properties are described in the
following table.

Component Template Properties table

Template
Property
Type

Description

Properties Custom property. Every component will inherit the value defined in the
template (it cannot be overridden by a component). If you change the
value, the change will be reflected in components created from the
template, including those previously created.

Using Serena Release Automation

124 Serena® Orchestrated Ops

Template
Property
Type

Description

Component
Property
Definitions

Every component will have this property; it will appear on the Create
New Component dialog for every component created from this template
(see Creating Components [page 102]). A value defined here can be
changed by created components. Each property must have a type:

• Text

Enables users to enter text characters.

• Text Area

Enables users to enter an arbitrary amount of text, limited to
limited to 4064 characters.

• Check Box

Displays a check box. If checked, a value of true will be used;
otherwise the property is not set.

• Select

Requires a list of one or more values which will be displayed in a
drop-down list box. Enables a single selection.

NOTES

Not currently implemented.

• Multi Select

Requires a list of one or more values which will be displayed in a
drop-down list box. Enables multiple selections.

• Secure

Used for passwords. Similar to Text except values are redacted.

Serena Release Automation Guide 125

Template
Property
Type

Description

Environment
Property
Definitions

Every environment that uses a component created by this template will
have this property. The property will appear on the environment's
Component Mappings pane Applications > [selected application]
> Environments > [selected environment] > Component
Mappings), see Application Environments [page 138]. A value defined
here can be changed by environment. Each property must have a type:

• Text

Enables users to enter text characters.

• Text Area

Enables users to enter an arbitrary amount of text, limited to
limited to 4064 characters.

• Check Box

Displays a check box. If checked, a value of true will be used;
otherwise the property is not set.

• Select

Requires a list of one or more values which will be displayed in a
drop-down list box. Enables a single selection.

NOTES

Not currently implemented.

• Multi Select

Requires a list of one or more values which will be displayed in a
drop-down list box. Enables multiple selections.

• Secure

Used for passwords. Similar to Text except values are redacted.

Using Component Templates

When you create a component based on a template, the component inherits any
process(es) the template may have (see Component Processes [page 109]), and any
possible properties (see Component Properties [page 105]).

To create a template-based component:

1. Display the Create New Component dialog Components > Templates > [selected
template] > Create New Component [button].

The Create New Component dialog (the same dialog used to create non template-
based components) is used to configure component. Properties defined in the
template will be predefined. If a source was selected in the template, the source is

Using Serena Release Automation

126 Serena® Orchestrated Ops

set here and the Source Config Type field is locked. For information about using this
dialog, see Creating Components [page 102].

2. After configuring editable properties, save the component.

Templates used to create components are listed in the Templates view.

Components created from templates are listed in the Components view.

Configuration Templates

Configuration templates contain configuration data. Typically, the data is for server
configurations, for example on Tomcat servers, but the data can be for any purpose.

To create a configuration template:

1. Display the Create New Configuration Template dialog Components > [selected
component] > Templates > Create New Configuration Template [button].

2. Enter a name in the Name field.

3. In the Template field, enter or paste the template text. Text can be in any script, or
no script at all. The amount of text is based on the database used by Serena Release
Automation. In general, there is no limit to the amount of text used for a
configuration template.

4. Save your work when you are finished.

Configuration templates can be edited at any time by using the Edit action.

Deleting and Deactivating Components
Components can be deactivated or deleted. To delete or deactivate a component, use the
desired action on the Components pane for the intended component.

When a component is deactivated, it remains in the database and CodeStation and can be
activated later. To activate a component, first click the Show Inactive Components check
box, then use the Activate action for the component.

When a component is deleted, it is removed–along with all versions–from the database
and CodeStation and cannot be activated at a later time. The original artifacts are not
affected; only the CodeStation copies are deleted.

Note: Components cannot be deleted if they are used by an application. To
delete a component used by an application, first remove the component from
the application.

Resources
To run a deployment, Serena Release Automation requires an agent (resource) or proxy
agent on the target machine. Typically, an agent is installed in every environment that an
application passes through. A typical production pipeline might be, say, SIT, UAT, PROD
(the application passes through two testing environments before reaching production). In
this scenario, at least three agents need to be installed–one per environment. If different
components run on different machines within a given environment, you might want to
install multiple agents in that environment.

Serena Release Automation Guide 127

Whether you need one or multiple resources per environment is determined by your
current infrastructure, deployment procedures, and other requirements. Many Serena
Release Automation users have significant differences among environments–in SIT you
might need to deploy a component to one machine, while in UAT you might need to
deploy the component to multiple machines. You could, for example, configure sub-groups
for the single agent in the SIT environment and then set up individual resources for each
agent in the UAT environment.

Resource Groups
Serena Release Automation uses the concept of resource groups to help you organize and
manage the agents installed in different environment throughout the network. You need
to create at least one resource group per installed agent, as when configuring your
Processes you will need to select the appropriate Group. What groups you create and how
you organize the groups, e.g., using subgroups, depends on your existing organizational
processes and infrastructure.

Note: Before continuing, ensure that at least one agent has been installed in a
target environment (for evaluation purposes, the agent can be on the same
machine as the server).

Creating a Resource Group

To create a resource group:

1. Go to Resources > Groups and click on the folder icon.

Action Tool

2. For the Type, most often Static is used.

Name and description. Typically, the name will correspond to either the Environment
the Resource participates in, the Component that uses the Resource Group, or a

Using Serena Release Automation

128 Serena® Orchestrated Ops

combination of both, for example SIT, DB, or SIT-DB. What description you give
depends on how you intend to use the Resource to which this Group is assigned and
such.

Create a Resource Group Dialog

3. Once the Resource has been created, select the pencil icon to edit the Group.

Add a Resource Dialog

4. Once you assign a Group to a Resource, you add Subresources. A subresource
enables you to apply logical identifiers, or categories, within any given Group.
During deployment configuration, you can Select a given Subresource that the
Process will run on. To create a Subresource, select the New Resource Group
creation.

Sub-resources

Serena Release Automation Guide 129

Resource Roles
A role enables you to further refine how a resource is utilized, and is similar to sub
resources. For most deployments, you will not need to define a role. During process
configuration, you select a specific role when determining the resource. A role can be used
to set up Serena Release Automation for rolling deployments, balancing, and such. For
example, you can set up your process to only deploy to a percentage of targets first, add
a manual task in the middle of the process that requires a user to execute for example,
after they have tested the partial deployment, and then once the manual task has
completed the rest of the process is assigned a second role responsible for deploying to
the rest of the target machines.

Role Properties

When you create a role, you can define properties for it. When you add the role to a
resource, you can set the values for the properties. For example, if you create a WS role
and define a serverURL property for it, you can access the property like this:

${p:resource/WS/serverURL}

For information about Serena Release Automation properties, see Serena Release
Automation Properties [page 217].

Agents
An agent is a lightweight process that runs on a target host and communicates with the
Serena Release Automation server. Agents perform the actual work of deploying
components and so relieves the server from the task, making large deployments involving
thousands of targets possible. Usually, an agent runs on the same host where the
resources it handles are located; a single agent can handle all the resources on its host. If
a host has several resources, an agent process is invoked separately for each one.
Depending on the number of hosts in an environment, a deployment might require a large
number of agents.

Agents are installed with the batch files provided with the installation files, see Agent
Installation [page 64]. Agents that will be installed on Unix machines can also be installed
remotely using Serena Release Automation's web application, which is described below.
Agents are run using the batch files included with the installation package.

Once an installed agent has been started, the agent opens a socket connection to the
Serena Release Automation server (securable by configuring SSL for server-agent
communication) based on the information supplied during installation. Agents on networks
other than the one where the server is located might need to open a firewall to establish
connection. Once communication is established, the agent will be visible in the Serena
Release Automation web application where it can be configured. Active agents–regardless
of OS–can be upgraded using the web application.

Agent configuration consists of assigning an agent to at least one environment; agents
can be assigned to multiple environments. If an agent is assigned to several
environments, it can perform work on behalf of all of them.

Remote Agent Installation
You can install an agent onto a Unix machine using the web application. A remotely
installed agent cannot be installed as a service.

Using Serena Release Automation

130 Serena® Orchestrated Ops

To install an agent:

1. Display the Install New Agent dialog by clicking the Install New Agent button on
the Agents pane Home > Resources > Agents.

2. Enter the required information into the dialog's fields:

Remote Agent Installation fields table

Field Description

Target Hosts* Host names or IP addresses of the machines where the agent
will be installed.

SSH Port* SSH port addresses of the machines where the agent will be
installed.

SSH
Username*

SSH user name used on the machines where the agent will be
installed.

Use Public Key
Authentication

Check this box if you want to authenticate using public key
authentication instead of a password.

SSH Password* SSH password associated with the user name used on the
machines where the agent will be installed.

Agent Name* Name of the agent.

Agent Dir* Directory where agent should be installed.

Java Home
Path*

Path to Java on the machine where the agent will be installed.

Temp Dir Path* Path to the directory used to perform the installation on the
target machine.

Server Host* Host name or IP address of the Serena Release Automation
server or agent relay to which the agent will connect.

Server Port* Serena Release Automation server port (7918) or agent relay
(7916) to which the agent will connect.

Mutual
Authentication

Check this box if the agent should enforce certificate validation
for mutual authentication.

Proxy Host Host name or IP address of the agent relay if used.

Proxy Port HTTP port of the agent relay (20080) if used.

3. Click Save when you are done.

Serena Release Automation Guide 131

Remotely installed agents will start running automatically. If a remotely installed agent
stops running, it must be restarted on the host machine.

Managing Agents Remotely
While we characterize an agent as a process (singular), technically an agent consists of
two processes: a worker process and a monitor process. Worker processes perform the
actual work of deployment, such as handling plug-in steps. Monitor processes manage the
worker process: handling restarts, upgrades, and tests for example. Once an agent is
installed, you can manage (via the monitor process) many of its features from the Serena
Release Automation web application. Agent properties can be changed directly by editing
the agent's conf/agent/installed.properties file and restarting the agent.

To manage an agent:

1. Display the Agents pane Home > Resources > Agents.

2. Click an action link for the desired agent. Actions are described in the following
table.

Agent Management table

Action Description

Edit This option enables you to edit the agent's description.

Restart This option will shutdown and restart the agent. While the agent is
shutdown, its status will be Offline.

Upgrade This option will shutdown the agent and apply the upgrade. While
the agent is shutdown, its status will be Offline. After the upgrade
is applied, the agent will be restarted. Before its status is Online, it
might briefly be Connected.

Test This option will perform an agent settings and connection test. Test
results are displayed in the Connection Test dialog.

Inactivate This option willl deactivate the agent. Agents that are deactivated
cannot perform deployments. To reactivate the agent, check the
Show Inactive Agents check box on the Agents pane, then click
Activate for the agent.

Delete Removes the agent.

Agent Pools
Similar to resource groups, agent pools help you organize and manage agents installed in
different environments.

Creating an Agent Pool

To create an agent pool:

Using Serena Release Automation

132 Serena® Orchestrated Ops

1. Display the Create New Agent Pool dialog by clicking the Create New Agent
Pool button on the Agent Pools pane Home > Resources > Agent Pools.

2. Enter the pool name in the Name field.

3. Optional. Enter a description in the Description field.

4. Click the Pool Members field to add agents to the pool. A selection-type pop-up is
displayed listing the available agents.

5. Select the agent or agents you want to add to the pool. Optionally, you can filter the
listed agents by entering search text into the text field.

6. When you are finished, click Save.

Managing Agent Pools

To manage agent pools:

1. Display the Agent Pools pane Home > Resources > Agent Pools.

2. Click an action link for the desired pool. Actions are described in the following table.

Agent Pool Management table

Action Description

Edit This option enables you to add/remove agents and edit the pool's
name and description.

Copy Copies (creates a new pool with the same agents as the selected
pool) the pool.

Inactivate This option will deactivate the agent pool.

Delete Removes the agent pool.

Applications
Applications are responsible for bringing together all the components that need to be
deployed together. This is done by defining the different versions of each component as
well as defining the different environments the components must go through on the way
to production. In addition, applications also map the constituent hosts and machines
(called resources) a component needs within every environment.

Applications also implement automated deployments, rollbacks, and such. These are
called application processes. However, application level processes are only concerned with
the components and resources necessary for deployment — differentiating application
processes from component processes (which are concerned with running commands, and
so on.

Applications also introduce snapshots to manage the different versions of each
component. A snapshot represents the current state of an application in the environment.
Typically, the snapshot is generated in an environment that has no approval gates –

Serena Release Automation Guide 133

called an uncontrolled environment. For most users, the snapshot is pushed through the
pipeline.

Note: Before configuring an application, you will need to ensure that at least
one agent has been installed in a target environment (for evaluation purposes,
the agent can be on the same machine as the server). In addition, you will also
need to add at least one resource group to the agent (see Resources [page
127]).

Related Topics

• Environments [page 134]

• Application Processes [page 134]

• Snapshots [page 134]

Environments
An environment is a collection of resources that host the application. Environments
typically include host machines and Serena Release Automation agents. When a
deployment is run, it is always done so in an environment. While environments are
collections of Resources, Resources can vary per environment.

For example, Environment 1 may have a single web server, a single middleware server,
and a single database server, that must be deployed to; Serena Release Automation
represents these as three, separate resources running in Environment 1. However,
Environment 2 may have a cluster of resources to which the same application must be
deployed. Serena Release Automation compensates for these differences with resource
groups (more at resources by keeping an inventory of everything that is deployed to each
environment: Serena Release Automation knows exactly the environment and server(s)
where the application was deployed to: and tracks the differences between the
environments.

Related Topics

• Applications [page 133]

Application Processes

Application Processes

A process plays a coordination role. They are authored using a visual drag-n-drop editor,
and composed of steps that call the component processes. For example, to deploy the
application you may invoke a process called Deploy. This Deploy process would in turn call
out to the requisite components and execute the deployment.

Related Topics

• Applications [page 133]

Snapshots
Snapshots specify what combination of component versions you deploy together. They are
models you create before deploying the application. A snapshot specifies the exact version
for each component in the application. When a snapshot is created, Serena Release
Automation gathers together information about the application, including the component
versions, for a given environment. Typically, the snapshot is generated in an environment

Using Serena Release Automation

134 Serena® Orchestrated Ops

that has no approval gates – called an uncontrolled environment. For most users, the
snapshot is pushed through the pipeline. Typically, one of the environment will always
remain uncontrolled to allow for snapshots. When a successful deployment has been run
in the uncontrolled environment, a snapshot is created based on the application's state
within the environment: thus capturing the different versions of the components at that
time. As the application moves through various testing environments, for example,
Serena Release Automation ensures that the exact versions (bit for bit) are used in every
environment. Once all the appropriate stages and approvals for a snapshot are complete,
the snapshot is pushed to production.

Related Topics

• Applications [page 133]

Creating Applications
You can create an application from scratch or import an existing one (see Importing/
Exporting Applications [page 136] for information about importing applications.

After creating an application, you:

• add components (Adding Components to an Application [page 136])

• create an environment (Creating an Environment [page 139])

• associate an agent with the environment (Mapping Resources to an Environment)

• create an application process (Application Processes [page 141])

Before configuring an application, ensure that at least one agent has been installed in a
target environment (for evaluation purposes, the agent can be on the same machine as
the server). See Resources [page 127].

To create an application:

1. Display the Create New Application dialog Applications > Create New
Application [button], and enter the following:

New Application Information table

Field Description

Name and
Description

Typically, correspond to the application you plan on deploying.

Notification
Scheme

notifications—based on events—can be sent out due to Serena
Release Automation integrations with LDAP and e-mail servers. For
example, when an application deployment fails or succeeds, the
default notification scheme sends out an email. Notifications can
also be used to send out emails to a user or a group (based on
their security role) for approval of a requested deployment (see
Creating Notification Templates [page 194]).

Serena Release Automation Guide 135

D:\bld\SOO4_X\SOO4_X-DOC\Documentation\output\sra_guide\DitaOut\ProcAppEnvCompMap.xml#task1111

Field Description

Enforce
Complete
Snapshots

If selected, the application requires every component to get
versioned.

2. Save your work when done.

Adding Components to an Application

Add at least one component to the application. Applications bring the different
components (their versions and processes) together so they can be deployed as a single
unit.

To add components to an application:

1. Display the Add a Component dialog Applications > [select application] >
Components > Add Component [button]

Figure 1. Selecting a Component

2. Use the Select a Component list box to choose a component. Components are
selected one at a time.

Importing/Exporting Applications

Applications can be imported and exported. Importing/exporting can be especially useful if
you have multiple Serena Release Automation servers, for example, and need to quickly
move or update applications.

Related Topics

• Exporting Applications [page 137]

Using Serena Release Automation

136 Serena® Orchestrated Ops

• Importing Applications [page 137]

Exporting Applications

Exporting an application creates a JSON file (file extension json) that contains the
application's properties, components (and their associated properties and processes), and
processes. For information about JSON, see http://www.json.org/.

To export an application:

On the Applications pane Home > Applications), Actions field, click the Export link. You
can load the file into a text editor, or save it. If you save it, a file is created with the same
name as the selected component, for example, helloWorldApplication.json.

Importing Applications

When you import an application, you can create an entirely new application or upgrade an
existing one. Components—including their properties and processes—associated with the
application are also imported (if available to the importing server). For information about
templates associated with imported components, see Importing/Exporting Components
[page 104].

Note: If imported components have the Import Versions Automatically
parameter set to true, Serena Release Automation will automatically import
component versions as long as the artifacts are accessible to the importing
server.

To import an application:

1. Display the Import Application dialog (Applications > Import Application
[button]).

2. Enter the path to the JSON file containing the application definition or use the
Browse button to select one.

3. If you want to upgrade an existing application, check the Upgrade Application check
box. To create a new application, leave the box unchecked.

If the application's name in the JSON file (not the name of the file itself) matches an
existing application, the application's parameters are updated with new values, and
new items—such as processes, environments, and components—are added. If the
name is not found, the command has no effect.

Note: The application's name is the first parameter in the JSON file. For
example:

"name": "helloWorldApplication",

4. Specify how imported components should be handled with the Component Upgrade
Type drop-down box. For these options, the components must be on the importing
server.

• To use the same components used by the imported application, select Use
Existing Component. The new application will contain references to the imported
applications components. This option is especially useful if you are importing a lot
of applications.

Serena Release Automation Guide 137

http://www.json.org/

If you are upgrading, the application will use the imported components, and no
longer use any not used by the imported application.

• To create new components based on those used by the imported application,
select Create New Component. New components will be created (based on the
imported application's components).

If you are upgrading, the application will use the newly created components and
no longer use any it previously used.

• When you want to create a fresh installation, select Fail if Component Exists. If
you are creating an application, it will create both a new application and
component unless the component already exists, in which case the application is
not imported.

If you are upgrading, the upgrade will fail if any imported components already
exist on the importing server.

• To ensure a component is on the importing server, select Fail if Component Does
Not Exist. If you are creating an application, it will create both a new application
and component unless the component does not exist, in which case the
application is not imported.

If you are upgrading, the upgrade will fail if an imported component does not
already exist on the importing server.

• To upgrade existing components, select Upgrade if Exists. This option creates an
application and upgrades existing components with data from the imported
application.

If you are upgrading and existing components match imported ones (all must
match), the components will be upgraded. If none of the imported components
match existing ones, the imported components will be used.

5. Click Submit.

Application Environments
An environment is a user-defined collection of resources that hosts an application. An
environment is the application's mechanism for bringing together components with the
agent that actually deploys them. Environments are typically modeled on some stage of
the software project life cycle, such as development, QA, or production. A resource is a
deployment target, such as a database or J2EE container. Resources are usually found on
the same host where the agent that manages them is located. A host can be a physical
machine, virtual machine, or be cloud-based.

Environments can have different topologies—for example: an environment can consist of
a single machine; be spread over several machines; or spread over clusters of machines.
Environments are application scoped. Although multi-tenant machines can be the target of
multiple applications, experience has shown that most IT organizations use application-
specific environments. Additionally, approvals are generally scoped to environments.

Serena Release Automation maintains an inventory of every artifact deployed to each
environment and tracks the differences between them.

Using Serena Release Automation

138 Serena® Orchestrated Ops

Creating an Environment
Before you can run a deployment, you must define at least one environment that
associates components with an agent on the target host. This initial environment is
typically uncontrolled and often used to create snapshots.

To create an environment:

1. Display the Create New Environment dialog Applications > [select
application] > Environments > Add New Environment [button].

2. Enter the environment information in the fields provided:

New Application Information table

Field Description

Name and
Description

Name is used as part of the deployment process, and typically
corresponds to the target environment. For example, if you are
deploying to an integration environment, you may want to use the
name "SIT". Description is optional text.

Require
Approvals

To require an approval before components can be deployed to the
environment, select this check box. If checked, Serena Release
Automation will enforce an approval process before the deployment
can be deployed to the environment. Initial deployments are
typically done in uncontrolled environments, but once the
deployment is successful, you can configure an approvals process
as the application moves along the development pipeline. If you are
setting up more than one environment, consider creating an
approvals process for at least one of them.

Lock
Snapshots

If you want all snapshots used in this environment to be locked to
prevent changes, select the check box.

Color Select a color to visually identify the environment in the user
interface.

Inherit
Cleanup
Settings

Determines how many and for how long componenet versions are
kept in CodeStation. By default, this check box is selected; the
application will use the values specified on the System Settings
pane. If unchecked, additional fields display: the Days to Keep
Versions (initially set to -1, keep indefinitely) and Number of
Versions to Keep (initially set to -1, keep all), which enable you to
define custom values.

3. Click Save.

Mapping Resources to an Environment
1. After you have added a component to the application, define where its artifacts

should be deployed by selecting a resource (agent) or resource group. See
Resources [page 127].

Serena Release Automation Guide 139

2. Display the Component Mappings pane Applications > [selected application]
> Environments > [selected environment] > Component Mappings.

Figure 1. Component Mapping

3. If the application has several components associated with it, select the one you want
to use from the component list. Each component associated with this application can
be mapped to a different agent (resource).

4. To associate a resource with the selected component:

• To add a resource group, click the Add a Resource Group button and select a
resource group. For information about creating resources, see Resource Groups
[page 128].

• To add a resource, click the Add a Resource button and select an resource.

After mapping components and resources, make the application deployment ready by
creating an application process, which is described in the following section.

Environment Properties
Environment properties can be created with the environment's Properties pane
(Applications > [selected application] > Environments > [>selected
environment] > Properties.

A value set on component environment overrides one with the same name set directly on
an environment property. Component environment properties enable you to centralize
properties, tracking type and default values, for instance. Environment properties provide
ad-hoc lists of property=value pairs.

Using Serena Release Automation

140 Serena® Orchestrated Ops

Referenced: ${p:environment/propertyName}

Application Processes
Application processes, like component processes, are created with the process editor.
Serena Release Automation provides several common process steps, otherwise application
processes are assembled from processes defined for their associated components.

Application processes can run manually, automatically on some trigger condition, or on a
user-defined schedule. When a component has several processes defined for it, the
application determines which ones are executed and in which order.

An application process is always associated with a target environment. When an
application process executes, it interacts with a specific environment. At least one
environment must be associated with the application before the process can be executed.
Application processes are environment agnostic; processes can be designed independently
of any particular environment. To use the same process with multiple environments (a
typical scenario), you associate each environment with the application and execute the
process separately for each one.

In addition to deployments, several other common processes are available, such as
rolling-back deployments. Serena Release Automation tracks the history of each
component version, which enables application processes to restore environments to any
desired point.

Creating Application Processes

To create an application process:

1. Display the Create an Application Process dialog Applications > [select
application] > Create New Process [button].

2. Enter the following information:

Application Process Fields table

Field Description

Name/
Description

Typically the name and description correspond to the application
you plan on deploying.

Required
Application
Role

Use this drop-down to select the role a user must have in order to
run the application. For information about creating application
roles, see Roles and Permissions [page 176]. The default value is
None.

Inventory
Management

If you want to handle inventory manually, select Advanced.

To have inventory handled automatically, leave the default value,
Automatic, selected.

Serena Release Automation Guide 141

Field Description

Offline
Agent
Handling

Specify how the process reacts if expected agents are offline:

Check Before Execution
Checks to see if expected agents are on line before running
the process. If agents are off line, the process will not run.

Use All Available; Report Failure:
Process will run as long as st least one agent defined in the
environment is on line; reports any failed deployments due to
off line agents. Useful for rollbacks or configuration
deployments.

Always Report Success
Process will run as long as at least one agent defined in the
environment is on line; reports successful deployments.

3. Save your work.

Application process—the steps comprising them—are configured with the process editor.
For information about using the process editor, see Process Editor [page 111]. For
information about individual process steps, see Application Process Steps.

Application Process Steps
Application processes, like component processes, are created with the Process Editor
[page 111]. Serena Release Automation provides several common process steps,
otherwise application processes are assembled from processes defined for their associated
components.

Application Process Step Details

The application process steps are described in the following topics:

• Finish [page 142]

• Install Component [page 143]

• Uninstall Component [page 143]

• Rollback Component [page 144]

• Manual Application Task (Utility) [page 145]

Finish

Ends processing. A process can have more than one Finish step.

Using Serena Release Automation

142 Serena® Orchestrated Ops

D:\bld\SOO4_X\SOO4_X-DOC\Documentation\output\sra_guide\DitaOut\Concappprocstp.xml#concept311

Install Component

Installs the selected component using one of the processes defined for the component.

Install Component Properties table

Field Description

Name Can be referenced by other process steps.

Component Component used by the step; a step can affect a single component. All
components associated with the application are available. If you want to
install another component, add another install step to the process.

Use
Versions
Without
Status

Restricts the components that can be used by the step—components
with the selected status are ignored. Available statuses: Active means
ignore components currently deployed; Staged means ignore
components currently in pre-deployment locations.

Component
Process

Select a process for the component selected above. All processes
defined for the component are available. Only one process can be
selected per step.

Ignore
Failure

When selected, the step will be considered to have run successfully.

Limit to
Resource
Role

User-defined resource role the agent running the step must have.

Run on First
Online
Resource
Only

Instead of being run by all agents mapped to the application, the step
will only be run by the first online agent identified by Serena Release
Automation. The mechanism used to identify the "first" agent is
database-dependent (thus indeterminate).

Precondition A JavaScript script that defines a condition that must exist before the
step can run. The condition must resolve to true or false.

Uninstall Component

Uninstalls the selected component.

Uninstall Component Properties table

Field Description

Name Can be referenced by other process steps.

Serena Release Automation Guide 143

Field Description

Component Component used by the step; a step can affect a single component. All
components associated with the application are available. If you want to
install another component, add another install step to the process.

Remove
Versions
With Status

Restricts the components that are affected by the step, only
components with the selected status are affected. Available statuses:
Active means use components currently deployed; Staged means use
components currently in pre-deployment locations.

Component
Process

Select a process for the component selected above. All processes
defined for the component are available. Only one process can be
selected per step.

Ignore
Failure

When selected, the step will be considered to have run successfully.

Limit to
Resource
Role

User-defined resource role the agent running the step must have.

Run on First
Online
Resource
Only

Instead of being run by all agents mapped to the application, the step
will only be run by the first online agent identified by Serena Release
Automation. The mechanism used to identify the "first" agent is
database-dependent (thus indeterminate).

Precondition A JavaScript script that defines a condition that must exist before the
step can run. The condition must resolve to true or false.

Rollback Component

Rolls-back a component version; replaces a component version with an earlier one.

Rollback Component Properties

Field Description

Name Can be referenced by other process steps.

Component Component used by the step; a step can affect a single component. All
components associated with the application are available. If you want to
install another component, add another install step to the process.

Remove
Versions
With Status

Restricts the components that are affected by the step, only
components with the selected status are affected. Available statuses:
Active means use components currently deployed; Staged means use
components currently in pre-deployment locations.

Using Serena Release Automation

144 Serena® Orchestrated Ops

Field Description

Component
Process

Select a process for the component selected above. All processes
defined for the component are available. Only one process can be
selected per step.

Ignore
Failure

When selected, the step will be considered to have run successfully.

Limit to
Resource
Role

User-defined resource role the agent running the step must have.

Rollback
type

Determines the type of rollback. Available statuses: Remove Undesired
Incremental Versions and Replace with Last Deployed.

Run on First
Online
Resource
Only

Instead of being run by all agents mapped to the application, the step
will only be run by the first online agent identified by Serena Release
Automation. The mechanism used to identify the "first" agent is
database-dependent (thus indeterminate).

Precondition A JavaScript script that defines a condition that must exist before the
step can run. The condition must resolve to true or false.

Manual Application Task (Utility)

A manual task is a mechanism used to interrupt an application process until some manual
intervention is performed. A task-interrupted process will remain suspended until the
targeted user or users respond. Typically, manual tasks are removed after the process
has been tested or automated.

Similar to approvals, triggered tasks alert targeted users. Alerts are associated with
environment- or application-defined user roles. Affected users can respond—approve—by
using the Work Items pane (see Work Items [page 147]). Unlike approvals, manual tasks
can be incorporated within an application process.

The task used to configure this step must have been previously defined with the
Application Manual Tasks [page 146].

Manual Application Task Properties table

Field Description

Name Typically the name and description correspond to the application.

Task
Definition

Used to select a user-defined task.

Environment
Role

Select the role expected to respond. The user mapped to this role will
have to respond to the generated work item before the process can
continue.

Serena Release Automation Guide 145

Field Description

Application
Role

Select the role expected to respond. The user mapped to this role will
have to respond to the generated work item before the process can
continue.

If both roles are selected, all affected users will have to respond before the process can
continue. See Creating Notification Templates [page 194].

Application Manual Tasks
A manual task is a mechanism used to interrupt an application process until some manual
intervention is performed. A task-interrupted process will remain suspended until the
targeted user or users respond. Typically, manual tasks are removed after the process
has been tested or automated.

Similar to approvals, triggered tasks alert targeted users. Alerts are associated with
environment- or application-defined user roles. Affected users can respond—approve—by
using the Work Items pane (see Work Items [page 147]). Unlike approvals, manual tasks
can be incorporated within an application process.

Creating Application Manual Tasks

To create a task:

1. Display the Create New Task Definition dialog Applications > [selected
application] > Tasks > Create New Task Definition [buttone].

2. Name the task then select a template from the Template Name field.

The individual tasks map to the notification scheme used by the application(see
Creating Notification Templates [page 194]). If a scheme is not specified, the default
scheme is used. The available tasks are:

• ApplicationDeploymentFailure

• ApprovalCreated

• TaskCreated

• ProcessRequestStarted

• DeploymentReadied

• ApplicationDeploymentSuccess

• Approval Failed

Using Manual Tasks

Manual tasks are implemented with the Manual Application Task (Utility) [page 145]. Use
the step to insert a manual task trigger into an application process.

Using Serena Release Automation

146 Serena® Orchestrated Ops

Approval Process
An approval process enables you to define the job that needs approved and the role of the
approver. An approval process must be created if the Requires Approval check box is
selected when creating/editing an environment. If a scheduled deployment requiring
approval reaches its start time without approval given, the process will not run and act as
a rejected request. To resubmit a request, you must request a new process. If an
approval-requesting process does not have a scheduled deployment time, the process will
remain idle until a response has been made.

Creating an Approval Process

To create an approval process, display the Approval Process Design Pane.

Home>Applications>[Application_Name]>Environments>Environment:
[Environ_Name>]Approval Process

Once the pane is displayed, select the steps that need approval from the process editor.
The steps are based on job type and the role of the approver. You have the option of
selecting three job types: the Application, Component, and/or Environment. For help
using the process editor see Process Editor [page 111].

Reviewing Status

To view the status of the request, display the Deployment Detail pane on the Reports tab.
If a request has been approved it will display as success. However, if the request was
rejected it will show failed. If a request is failed display the Application Process Request by
clicking view request.

If a comment has been made regarding the process, you can view it by clicking the log
button in the actions column on the Application Process Request.

Work Items

If a job requiring approval is created, an approval process will have to be created. The job
requiring approval will display in the approvers Work Items tab. Until approved, the job
will remain idle if unscheduled. If time has elapsed on a scheduled job needing approval,
the job will fail. This control allows the approver to verify the deployment details, and
choose the time it is deployed. Notifications are sent to users who are eligible to complete
an approval step if the system is configured with an email server and the user has an
email address set.

View Details of Process

In the Works Items tab, the approver can view the name of the process, when the request
was submitted, who requested the process, and the snapshot or version used. The
approver can also view details of the environment or resource by clicking the link in the
Environment/Resource column. They can view the details of the target by clicking the link
in the target column. Or view details on the request by selecting the View Request in the
Actions column. The Actions column is also where the approver can respond to the
request.

Responding to Request

To respond to a request, display the Respond dialog box by clicking Respond in the
Actions column. The approver has the option of leaving a comment. If a request is
rejected the process will not run. If approved, the process will begin.

Serena Release Automation Guide 147

Snapshots
A snapshot is a collection of specific component versions and processes, usually versions
that are known to work together. Typically, a snapshot is created when a successful
deployment has been run in an uncontrolled environment. Snapshots can be created in a
controlled environments as well. As the application moves components through various
environments, Serena Release Automation ensures that the exact versions and processes
you selected are used in every environment. Snapshots help manage complex
deployments–deployments with multiple environments and development teams.

Creating Snapshots

To create a snapshot:

1. Display the New Application Snapshot pane Home > Application > Snapshots >
Create New Snapshot.

2. Enter the name of your snapshot in the Name field.

3. In the Process Version Locking field, specify how you want Serena Release
Automation to select component processes:

Always use Latest Version

Default. Use the most recently defined component process version for each
component in the application.

Lock to Current Versions

Use the current component process version for each component.

4. For each component in the application, you can specify which version to use:

Add Version

Enables you to select any version in Codestation for the component.

Copy From Environment

Uses the currently deployed (in this environment) component version.

Remove All

Removes all deployed component versions from this environment.

5. Instead of specifying a version for each component, you can use the most recently
deployed version (in this environment) for each component in the application by
using the Copy All From Environment button.

If you want to discard any selected component versions, use the Clear All Components
button.

Using Serena Release Automation

148 Serena® Orchestrated Ops

Application Gates
Gates provide a mechanism to ensure that component versions cannot be deployed into
environments unless they have the gate-specified status. Version statuses are user-
defined values that can be applied to component versions and used in component
processes or application gates. Version statuses can be applied though the user interface
Components > [selected component] > Versions > [selected version] > Add a
Status [button], or by the Add Status to Version plug-in step. They are displayed in the
Latest Status field on the component's Versions pane Components > [selected
component] > Versions.

Version statuses are defined in the default.xml file which you can freely edit to add your
own values, see Structure of the default.xml File [page 151]. Component versions do not
have to have gates. Gates are defined at the environment level; an environment can have
a single gate defined for it.

Creating Gates

To create a gate:

1. Display the Gates pane for the target application Applications > [selected
application] > Gates.

Serena Release Automation Guide 149

Figure 1. Gates Pane

2. Select a value from the Add a new condition list box.

The available statuses are defined in the default.xml file (discussed below). The
default statuses— Latest, Passed Tests, Archived—are supplied as examples; it
is assumed you will supply your own values.

Selecting a value provides both And and Or selection boxes.

Figure 2. Gate Definition

Using Serena Release Automation

150 Serena® Orchestrated Ops

Using the And box adds an additional value to the condition that must be satisfied.
Using the default values for example, defining the following gate Passed Tests And
Latest means that only component versions with both statuses— Passed Tests and
Latest—satisfy the condition and can be deployed into the environment. A single
condition can have as many And-ed values as there are statuses defined in the
default.xml file.

Using the Or box adds an additional condition to the gate. Additional conditions are
defined in the same way as the first one. A gate with two or more conditions means
the component will be deployed if it meets any of the conditions. For example, if the
following two gates are defined, Passed Tests, and Latest, a component will pass
the gate if it has either status (or both). A single gate can have any number of
conditions.

3. Save your work when finished.

See Component Version Statuses [page 109] for more information about component
statuses.

Structure of the default.xml File

Inventory and versions statuses are defined in the default.xml file. You can modify the
supplied values for both types as well as add your own values. If you modify the file,
restart the server in order to see your changes.

Here an example of default.xml:

<?xml version="1.0"?>
<status-scheme name="Default">
<inventory-statuses>
<status name="Active" color="#8DD889" unique="true" />
<status name="Staged" color="#80D8FF" />
</inventory-statuses>
<version-statuses>
<status name="Latest" color="#F6F4D8" unique="true" />
<status name="Passed Tests" componentRoleName="StatusAdder" color="#FFDDAA" />
<status name="Archived" color="#AAAAAA" />
</version-statuses>
</status-scheme>

Each <status/> element has a required name attribute and several optional ones, defined
in the following table:

<status> Attributes table

Attribute Description

name Identifies the status; appears in user-interface. Used to create
gates, and available in process steps.

color Hexadecimal color definition; determines the color displayed in
the user interface.

Serena Release Automation Guide 151

Attribute Description

unique Boolean value (true|false). Only one component version with
this status/attribute will be deployed to the environment.

componentRoleName Security role required by user to add this status to the
component version.

All attributes must be enclosed in double-quotes.

Note: While you can add as many values as you like, you cannot create new
status types (only inventory- and version-statuses are supported). Additionally,
all values must be defined in default.xml.

Deployments
Deployments are done with applications (see Creating Applications [page 135] for
information about creating applications). Performing a deployment is straightforward: you
run a deployment-type process defined for an application in one of its environments.
(Application processes can do things other then deploying, such as rolling-back or
uninstalling components.) An application process is run by the Request Process command
on the application's Environment pane Application > selected_application >
Environment.

Figure 1. Request Process Actions

To run an application:

1. Go to the Applications tab.

Using Serena Release Automation

152 Serena® Orchestrated Ops

2. Click the application.

3. For the environment where you want to perform the deployment, under Actions
click Request Process.

The Run Process dialog displays.

4. Click the Run Process link for the environment you want to use.

The Run Process dialog displays.

Figure 2. Run Process Dialog

5. If you want to use a snapshot, select it from the Snapshot drop-down list-box. If you
select a snapshot, the deployment will automatically use the component version(s)
defined for the snapshot. For information about snapshots, see Snapshots [page
148].

6. If you did not select a snapshot, select a component version from the Version list-
box. If more than one component is mapped to the application, each one is listed
separately. Version options are described in the following table:
Table 1. Version Options

Version
Option

Description

None No version for this component. Useful when performing multi-
component deployments or testing.

Specific
Version

Enables you select any version already in Codestation.

Latest
Version

Automatically uses the most recently imported version.

Serena Release Automation Guide 153

Version
Option

Description

Latest With
Status

Automatically uses the most recently imported version with the
specified status. Status values are: Latest (default value), Passed
Test, Archived.

All With
Status

All component versions with the selected status will be deployed.
Status values are: Latest, Passed Test, Archived.

All in
Environment

All component versions already deployed in the environment with
the selected status will be deployed. Status values are: Active
(default), Staged.

All in
Environment
(Reversed)

All component versions already deployed in the environment with
the selected status will be deployed in reverse order. Status
values are: Active (default), Staged.

7. Use the Only Changed Version check box to ensure that only changed versions are
deployed (it is checked by default). If checked, no previously deployed versions will
be deployed. If, for example, you check the box and select a specific version that
was already deployed, the version will not be redeployed. Uncheck the box if you
want to deploy a version regardless of whether or not it was already deployed (if the
inventory is out of date, for instance).

8. Select the process you want to run from the Process list box. All processes created
for the application are listed.

9. If you want to run the process at a later time, click the Schedule Deployment? check
box (it is unchecked by default). If checked, fields appear enabling you to specify
the date and time when the process will run. You can also make the process run on
a recurring basis.

10. When finished, click Submit to start the process. An application process will start
immediately unless scheduled for a later time.

When a process starts, use the Application Process Request pane to review the
deployment's status. This pane is also used if the process requires approvals.

Application Process Request Pane

Using Serena Release Automation

154 Serena® Orchestrated Ops

After a process finishes, click the Details action to display the Deployment of Component
pane, which can be used to review the deployment details.

Deployment of Component Pane

The actions available for this pane enable you to review the deployment's output log,
error log, and input/output parameters.

Serena Release Automation Guide 155

Scheduling Deployments
Serena Release Automation has a built-in deployment scheduling system for setting
regular deployments, or even black-out dates, for your Deployments. Deployments for an
individual Application are scheduled on a per-environment basis, set when you run a
deployment of a Snapshot or Deployment Process. Black-out dates are set within the
individual Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Request
Process. If you are scheduling a Snapshot deployment, go to Application > Snapshots
> Request Process instead. Regardless of the type of deployment you are scheduling,
configuration is the same.

After you check the Schedule Deployment box, Serena Release Automation will prompt
you to give the date and time you want the deployment to run. The Make Recurring
setting will deploy the Application on a regular schedule. For example, if you are
practicing Continuous Delivery, the Daily option will deploy the Application to the target
Environment every day.

Once you have scheduled the deployment, it will be added to the Calendar. There, if you
click on the Scheduled Deployment, you can edit, delete, or investigate the deployment.

Setting Blackouts

A blackout is a set per-environment, per-application. Once set, no deployments (nor
snapshots) can be scheduled to occur in that environment. Any previously scheduled
deployments to the Environment will fail if they fall within the blackout date you set. To
set up a blackout, go to Application > Environments > Calendar > Add Blackout). If
you need to set blackouts for more than one environment, you must do this for each
individual one. Serena Release Automation will prompt you to give the dates and times for
the blackout.

Reports
Serena Release Automation provides deployment- and security-type reports:

Deployment reports

Contain historical information about deployments. Data can be filtered in a variety of
ways and reports can be printed and saved. In addition, you can save search criteria
for later use (see Deployment Reports [page 157]).

Security reports

Provide information about user roles and privileges (see Security Reports [page
170]).

For information about saving and printing reports (see Saving and Printing Reports [page
173]).

The following tables summarize the out-of-the-box reports.

Using Serena Release Automation

156 Serena® Orchestrated Ops

Deployment Reports table

Report Description

Deployment
Detail

Provides information about deployments executed during a user-
specified reporting period. Each report row represents a deployment
that executed during the reporting period and matched the filter
conditions (see Deployment Detail Report [page 158]).

Deployment
Average
Duration

Average deployment times for applications executed during a user-
specified reporting period (see Deployment Average Duration Report
[page 165]).

Deployment
Total
Duration

Total deployment times for applications executed during a user-specified
reporting period (see Deployment Total Duration Report [page 167]).

Deployment
Count

Provides information about the number of deployments executed during
a user-specified reporting period (see Deployment Count Report [page
161]).

Security Reports table

Report Description

Application
Security

Provides information about user roles and privileges defined for Serena
Release Automation-managed applications (see Application Security
Report [page 171]).

Component
Security

Information about user roles and privileges defined for components
(see Component Security Report [page 171]).

Environment
Security

Information about user roles and privileges defined for environments
(see Environment Security Report [page 172]).

Resource
Security

Information about user roles and privileges defined for resources (see
Resource Security Report [page 173]).

Deployment Reports
Deployment Reports contain historical information about deployments, such as the total
number executed and their average duration. Data can be filtered in a variety of ways and
reports can be printed and saved. In addition, you can save search criteria for later use.
See Saving and Printing Reports [page 173].

Serena Release Automation Guide 157

Deployment Detail Report

The Deployment Detail Report provides information about deployments executed during a
user-specified reporting period. Each report row represents a deployment that executed
during the reporting period and matched the filter conditions.

Reports can be filtered in a variety of ways (discussed below), and columns selectively
hidden. Reports can be saved and printed. See Saving and Printing Reports [page 173].

When selected, the report runs automatically for the default reporting period–current
month–and with all filters set to Any. The default report represents all deployments that
ran during the current month.

Deployment Detail Fields

Initially, all fields are displayed.

Deployment Detail Fields table

Field Description

Application Name of the application that executed the deployment.

Environment Target environment of the deployment.

Date Date and time when the deployment was executed.

User Name of the user who performed the deployment.

Status Final disposition of the deployment. Possible values are:

• Success

• Failure

• Running

• Scheduled

• Approval Rejected

• Awaiting Approval

Duration Amount of time the deployment ran. For a successful deployment, the
value represents the amount of time taken to complete successfully. If
deployment failed to start, no value is given. If a deployment started
but failed to complete, the value represents the amount of time it ran
before it failed or was cancelled.

Action This field provides links to additional information about the deployment.
The View Request link displays the Application Process Request
pane (see Applications [page 133].

Using Serena Release Automation

158 Serena® Orchestrated Ops

Running the Deployment Detail Report

To run a report:

1. Use the Date Range date-picker to set the report's start- and end-dates.

Date Range table

Field Description

Current, Prior
Week

Start day is either Sunday or Monday, depending on what is
defined in your system.

Current, Prior
Month

Start day is first day of the month.

Current, Prior
Quarter

Quarters are bound by calendar year.

Current, Prior
Year

Current year includes today's date.

Custom Displays the Custom pop-up which enables you to pick an
arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in
the reporting period.

The end-time is automatically set to 24:00 for the selected date.

2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from
the corresponding property list box.

Report Filters table

Field Description

Application Only deployments executed by the selected application appear in
the report. Default value: Any.

Environment Only deployments executed by the application selected with the
Application list box that also used this environment appear in the
report. If the application value is Any, the available value is Any;
otherwise, environments defined for the selected application are
listed.

User Only deployments executed by the selected user appear in the
report. Default value: Any.

Serena Release Automation Guide 159

Field Description

Status Only deployments with the selected status appear in the report.
Default value: Any.

Plugin Only deployments that used the selected plug-in appear in the
report. Default value: Any. Note: the Any value also includes
deployments that did not use a plug-in.

3. Run the report.

Click the Run button to apply your filter conditions to the data and produce the
report.

By default, the report is sorted by Application. You can sort the report on any field by
clicking on the column header.

For information about saving and printing reports, see Saving and Printing Reports [page
173].

Report Samples: Deployment Detail

The following table contains examples of reports that can be produced using the
Deployment Detail Report.

Sample Reports table

Field Description

Show me: All failed deployments
that occurred on July 4th during
the previous year.

• Application: Any

• Status: Failure

• Date Range: Use the Custom pop-up to set
the start- and end-dates to July 4th.

Show me: Deployments for an
application that used a specific
environment.

• Application: Select the value from the drop-
down list box.

• Environment: Select the environment from
the drop-down list box.

When an application is selected, only
environments defined for it are available in
the Environment drop-down list box.

Using Serena Release Automation

160 Serena® Orchestrated Ops

Field Description

Show me: Failed deployments
that used a specific plug-in
yesterday.

• Status: Failure

• Plugin: Select the value from the drop-down
list box.

• Date Range: Use the Custom pop-up to set
the start- and end-dates to the previous day.

Show me: My deployments that
used a specific application during
the past month.

• Application: Select the value from the drop-
down list box.

• User: Select your user ID.

• Date Range: Select Prior Month.

Deployment Count Report

The Deployment Count Report provides information about the number of deployments
executed during a user-specified reporting period. The report provides both a tabular
presentation and line graph of the data. Each table row represents an environment used
by an applications for the reporting period and interval.

The line graph elements are:

• y-axis represents the number of deployments

• x-axis represents reporting intervals

• plot lines represent environments used by applications

The units along the y-axis are scaled to the number of records reported. The units along
the x-axis represent the reporting interval, which can be: months, weeks, or days. Each
color-coded plot line represents a single environment used by the deployment during the
reporting period.

When selected, the report runs automatically for the default reporting period (current
month)and reporting interval (days), and with all filters set to Any. The default report
provides a count of all deployments that ran during the current month.

Deployment Count fields

Deployment Count Fields table

Field Description

Application Name of the application that executed the deployment.

Environment Name of the environment used by the application.

Serena Release Automation Guide 161

Field Description

Reporting
Interval

The remaining columns display the number of the deployments for the
selected reporting interval.

Running the Deployment Count Report

To run a report:

1. Set the reporting period.

Use the Date Range date-picker to set the report's start- and end-dates. The
selected value(s) determines the columns in the tabular report, and the coordinate
interval on the graph's x-axis. Default value: Current Month.

Date Range

Field Description

Current,
Prior Week

Start day is either Sunday or Monday, depending on what is
defined in your system. Reporting interval is set to days.

Current,
Prior Month

Start day is first day of the month. Reporting interval is set to
days.

Current,
Prior
Quarter

Quarters are bound by calendar year. Reporting interval is set to
weeks.

Current,
Prior Year

Reporting interval is set months.

Custom Displays the Custom pop-up which enables you to pick an arbitrary
start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in
the reporting period.

The end-time is automatically set to 24:00 for the selected date.

2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from
the corresponding property list box.

Filters table

Using Serena Release Automation

162 Serena® Orchestrated Ops

Field Description

Application Only deployments executed by the selected application(s) appear in
the report. To select applications:

a. Click Application.

b. To include an application in the report, click the corresponding
check box. If a large number of applications are listed, type the
first few letters of the application's name in the text box to
scroll the list. Multiple applications can be selected.

c. Click OK.

Status Only deployments with the selected status appear in the report.
Default value: Success or Failure, which means all deployments.

Plugin Only deployments that used the selected plug-in appear in the
report. Default value: Any. Note: the Any value also includes
deployments that did not use a plug-in.

3. Run the report.

Click Run to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced.

Deployment Count Graph

Each environment used by a reporting application is represented by an individual plot line
and table row. You can hide a plot line by clicking the corresponding item in the graph
legend. To see information about a graph coordinate, hover the mouse over the graph
point.

You can zoom a graph area by dragging the mouse over the area.

Serena Release Automation Guide 163

For information about saving and printing reports, see Saving and Printing Reports [page
173].

Report Samples: Deployment Count

The following table contains examples of reports that can be produced using the
Deployment Count Report.

Sample Reports

Field Description

Show me: The number of successful deployments for
two specific applications during the past ten days that
used a particular plug-in.

• Application: Select
both applications from
the Applications dialog.

• Status: Success

• Plugin: Select the plug-
in from the drop-down
list box.

• Date Range: Use the
Custom pop-up to set
the ten-day range.

Show me: The number of failed deployments for a
given application during the past month • Application: Select the

value from the
Applications dialog.

• Status: Failure

• Date Range: Select
Prior Month.

Show me: The number of failed deployments that used
a specific plug-in yesterday. • Application: Select the

applications from the
Applications dialog.

• Status: Failure

• Plugin: Select the value
from the drop-down list
box.

• Date Range: Use the
Custom pop-up to
select the previous day.

Using Serena Release Automation

164 Serena® Orchestrated Ops

Deployment Average Duration Report

The Deployment Average Duration Report provides average deployment times for
applications executed during a user-specified reporting period. The report provides both a
tabular presentation and line graph of the data. Each table row represents an environment
used by an application for the reporting period and interval.

The line graph elements are:

• y-axis represents deployment duration average times

• x-axis represents reporting intervals

• plot lines represent environments used by the applications

The units along the y-axis are scaled to the number of records reported. The units along
the x-axis represent the reporting interval, which can be: months, weeks, or days. Each
color-coded plot line represents a single environment used by the deployment during the
reporting period.

When selected, the report runs automatically for the default reporting period (current
month)and reporting interval (days), and with all filters set to Any. The default report
provides average deployment times for all deployments that ran during the current
month.

Deployment Average Duration Fields

Average Duration Fields

Field Description

Application Name of the application that executed the deployment.

Environment Name of the environment used by the application.

Reporting
Interval

The remaining columns display the average deployment times for the
reporting interval.

Running the Deployment Average Duration Report

To run a report:

1. Set the reporting period.

Use the Date Range date-picker to set the report's start- and end-dates. The
selected value(s) determines the columns in the tabular report, and the coordinate
interval on the graph's x-axis. Default value: Current Month.

Date Range

Field Description

Current,
Prior Week

Start day is either Sunday or Monday, depending on what is
defined in your system. Reporting interval is set to days.

Serena Release Automation Guide 165

Field Description

Current,
Prior Month

Start day is first day of the month. Reporting interval is set to
days.

Current,
Prior
Quarter

Quarters are bound by calendar year. Reporting interval is set to
weeks.

Current,
Prior Year

Reporting interval is set months.

Custom Displays the Custom pop-up which enables you to pick an
arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in
the reporting period.

The end-time is automatically set to 24:00 for the selected date.

2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from
the corresponding property list box.

Filters table

Field Description

Application Only deployments executed by the selected application(s)appear in
the report. To select applications:

a. Click the Application button.

b. To include an application in the report, click the corresponding
check box.

If a large number of applications are listed, type the first few
letters of the application's name in the text box to scroll the list.
Multiple applications can be selected.

c. Click OK.

Status Only deployments with the selected status appear in the report.
Default value: Success or Failure, which means all deployments.

Plugin Only deployments that used the selected plug-in appear in the
report. Default value: Any.

Note: Any value also includes deployments that did not
use a plug-in.

Using Serena Release Automation

166 Serena® Orchestrated Ops

3. Run the report.

Click Run to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced. Each environment used by a reporting
application is represented by an individual plot line and table row. You can hide a plot line
by clicking the corresponding item in the graph legend. To see information about a graph
coordinate, hover the mouse over the graph point.

You can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see Saving and Printing Reports [page
173].

Sample Reports: Deployment Average Duration

The following table contains examples of reports that can be produced using the
Deployment Average Duration Report.

Sample Reports table

Field Description

Show me: Average durations for two specific
applications during the past ten days that used
a particular plug-in.

• Application: Select both
applications from the
Applications dialog.

• Status: Success or Failure

• Plugin: Select the plug-in from
the drop-down list box.

• Date Range: Use the Custom
pop-up to set the ten-day
range.

Show me: Average durations for successful
deployments for a given application during the
past six months.

• Application: Select the
application from the Applications
dialog.

• Status: Success

• Date Range: Use the Custom
pop-up to set the range to the
previous six months.

Deployment Total Duration Report

The Deployment Total Duration Report provides total deployment times for applications
executed during a user-specified reporting period. The report provides both a tabular
presentation and line graph of the data. Each table row represents an environment used
by one of the selected applications for the reporting period and interval.

Serena Release Automation Guide 167

The line graph elements are:

• y-axis represents deployment duration times

• x-axis represents reporting intervals

• plot lines represent environments used by the applications

The units along the y-axis are scaled to the number of records reported. The units along
the x-axis represent the reporting interval, which can be: months, weeks, or days. Each
color-coded plot line represents a single environment used by an application during the
reporting period.

When selected, the report runs automatically for the default reporting period (current
month)and reporting interval (days), and with all filters set to Any. The default report
provides total deployment times for all deployments that ran during the current month.

Deployment Total Duration Fields

Total Duration Fields table

Field Description

Application Name of the application that executed the deployment.

Environment Name of the environment used by the application.

Reporting
Interval

The remaining columns display the total deployment times for the
reporting interval.

Running the Deployment Total Duration Report

To run a report:

1. Set the reporting period.

Use the Date Range date-picker to set the report's start- and end-dates. The
selected value(s) determines the columns in the tabular report, and the coordinate
interval on the graph's x-axis. Default value: Current Month.

Date Range table

Field Description

Current,
Prior Week

Start day is either Sunday or Monday, depending on what is
defined in your system. Reporting interval is set to days.

Current,
Prior Month

Start day is first day of the month. Reporting interval is set to
days.

Current,
Prior
Quarter

Quarters are bound by calendar year. Reporting interval is set to
weeks.

Using Serena Release Automation

168 Serena® Orchestrated Ops

Field Description

Current,
Prior Year

Reporting interval is set months.

Custom Displays the Custom pop-up which enables you to pick an
arbitrary start- and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in
the reporting period.

The end-time is automatically set to 24:00 for the selected date.

2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from
the corresponding property list box.

Filters table

Field Description

Application Only deployments executed by the selected application(s) appear in
the report. To select applications:

a. Click the Application button.

b. To include an application in the report, click the corresponding
check box.

If a large number of applications are listed, type the first few
letters of the application's name in the text box to scroll the list.
Multiple applications can be selected.

c. Click OK.

Status Only deployments with the selected status appear in the report.
Default value: Success or Failure, which means all deployments.

Plugin Only deployments that used the selected plug-in appear in the
report. Default value: Any.

Note: The Any value also includes deployments that did
not use a plug-in.

3. Run the report.

Click the Run button to apply your filter conditions to the data and produce the
report.

A tabular report and line graph are produced. Each environment used by a reporting
application is represented by an individual plot line and table row. You can hide a plot line

Serena Release Automation Guide 169

by clicking the corresponding item in the graph legend. To see information about a graph
coordinate, hover the mouse over the graph point.

You can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see Saving and Printing Reports [page
173].

Sample Reports: Deployment Total Duration

The following table contains examples of reports that can be produced using the
Deployment Total Duration Report.

Sample Reports table

Field Description

Show me: Total duration times for two specific
applications during the past ten days that used a
particular plug-in.

• Application: Select both
applications from the
Applications dialog.

• Status: Success or
Failure

• Plugin: Select the plug-in
from the drop-down list
box.

• Date Range: Use the
Custom pop-up to set the
ten-day range.

Show me: Total duration times for successful
deployments for a given application during the past
six months.

• Application: Select the
application from the
Applications dialog.

• Status: Success

• Time Unit: Months

• Date Range: Use the
Custom pop-up to set the
six-month range.

Security Reports
Security Reports provide information about user roles and privileges defined with the
Serena Release Automation security system.

Using Serena Release Automation

170 Serena® Orchestrated Ops

Application Security Report

The Application Security Report provides information about user roles and privileges
defined for Serena Release Automation-managed applications. Each report row represents
an individual application. When selected, the report runs automatically for all applications.

Application Security Fields

Application Security Fields table

Field Description

Application Name of the application.

Run
Component
Processes

Users who have component process execution privileges. For
information about component processes, see Creating Components
[page 102].

Execute Users who have application execution privileges. For information about
applications, see Applications [page 133].

Security Users who can define privileges for other users. For information about
security, see Serena Release Automation Security [page 175].

Read Users who can review information about the application but not change
it.

Write Users who can access and edit the application.

The report is sorted by Application. You can change the sort order by clicking on the
column header.

For information about saving and printing reports, see Saving and Printing Reports [page
173].

Component Security Report

The Component Security Report provides information about user roles and privileges
defined for components. Each report row represents an individual component. When
selected, the report runs automatically for all components.

Component Security Fields

Component Security Fields table

Field Description

Component Name of the component.

Execute Users who have component process execution privileges. For information
about component processes, see Creating Components [page 102].

Serena Release Automation Guide 171

Field Description

Security Users who can define privileges for other users. For information about
security, see Serena Release Automation Security [page 175]

Read Users who can review information about the component but not change
it.

Write Users who can access and edit the component.

The report is sorted by Component. You can change the sort order by clicking the
column header.

For information about saving and printing reports, see Saving and Printing Reports [page
173].

Environment Security Report

The Environment Security Report provides information about user roles and privileges
defined for environments. Each report row represents an individual environment. When
selected, the report runs automatically for all environments.

Environment Security Fields

Environment Security Fields table

Field Description

Application Name of the application.

Environment Name of the environment.

Execute Users who have execution privileges for the environment. For
information about environments, see Applications [page 133].

Security Users who can define privileges for other users. For information about
security, see Serena Release Automation Security [page 175].

Read Users who can review information about the environment (but not
change it).

Write Users who can access and edit the environment.

The report can be sorted by Application or Environment. By default, it is sorted by
Application. You can change the sort order by clicking the column header.

For information about saving and printing reports, see Saving and Printing Reports [page
173].

Using Serena Release Automation

172 Serena® Orchestrated Ops

Resource Security Report

The Resource Security Report provides information about user roles and privileges defined
for resources. Each report row represents an individual resource. When selected, the
report runs automatically for all resources.

Resource Security Fields

Resource Security Fields table

Field Description

Resource Name of the resource.

Execute Users who have execution privileges for the resource. For information
about resources, see Resources [page 127].

Security Users who can define privileges for other users. For information about
security, see Serena Release Automation Security [page 175].

Read Users who can review information about the resource but not change it.

Write Users who can access and edit the resource.

The report is sorted by Resource. You can change the sort order by clicking on the
column header.

For information about saving and printing reports, see Saving and Printing Reports [page
173].

Saving and Printing Reports

You can print and save report data for all report types. In addition, you can save filter and
sort order information for deployment-type reports.

Saving Report Data

Serena Release Automation saves report data in CSV files (comma separated value).

To save report data:

1. Set the filters (if any) and run the report.

2. Click CSV.

3. Use the Opening File dialog. You can save the data to file, or open the data with an
application associated with CSV-type files on your system.

Note: Sort-order and hidden/visible column information is not preserved in the
CSV file.

Serena Release Automation Guide 173

Saving Report Filters

You can save filter and sort-order settings for deployment reports. Saved reports can be
retrieved from the Reports pane > My Reports menu.

To save a report:

1. Set the filter conditions.

2. Define the reporting period.

3. Run the report.

4. Optional. Set the sort order.

You can change the sort order for any column by clicking the column header.

5. Optional. Change column visibility. Click Edit to display the Select Columns dialog.
By default, all columns are selected to appear in a report. To hide a column, click the
corresponding check box.

6. Click Save. The Save Current Filters dialog displays.

7. Enter a name for the file, and save your work.

To run your report, click the report name in the My Reports menu.

To delete your report, click Delete.

Printing Reports

To print a report:

1. Set the filter conditions.

2. Define the reporting period.

3. Run the report.

4. Optional. Set the sort order.

Your changes are reflected in the printed report.

5. Optional. Change column visibility. By default, all columns are selected to appear in
the printed report. Hidden columns will not appear in the output.

6. Click Print to print your report.

Administration
This documentation contains the following Administration sections:

• Serena Release Automation Security [page 175]

• System Settings [page 189]

• Configuration [page 197]

• Inventory [page 201]

Administration

174 Serena® Orchestrated Ops

Serena Release Automation Security
Serena Release Automation provides a flexible, Roles and Permissions [page 176] that
maps to your organizational structure. Different product areas, such as components, can
be secured by roles. Each area has a set of permissions available to it. To configure
security for an area, you create roles using the available permissions—execute, read,
write, and so forth.

So, how are permissions applied to users? First, global default permissions can be
granted. Default permissions are granted by product area and apply to all users. If default
permissions are granted for, say, the agent area, a user will have those permissions even
if she is also part of a group or role that does not.

Groups
Another way users can be granted permissions is by being a member of a group. Groups
can have default permissions that apply to all group members. If a user is assigned to a
group with default permissions for the agent area, as above, she will have those
permissions even if she is also assigned a role that does not have them.

Roles and Permissions
Finally, users can be assigned to roles. Role members inherit a role's permissions. Except
for UI and system security, users are assigned to roles on an item by item basis. For
example, a user can be assigned a role that enables them to see only one application or
only one component. Both groups and individual users can be assigned to roles.

Roles and permissions, including default permissions, are configured on an area by area
basis; granting the execute permission to one role does not grant it to another. The
default admin role has all permissions, but you can create another user with all
permissions by creating a role for each area with all permissions granted, then assigning
the user to each role. Typically, new roles are added to product areas during setup and
occasionally thereafter.

While any number of roles can be created for an area, areas themselves cannot be
created, modified (the available pool of permissions cannot be changed), or deleted.

Related Topics

• Setting up Security [page 175]

Setting up Security
Generally, you perform the following steps in order when setting-up Serena Release
Automation security:

1. Create Roles

Create roles and define permissions for the various product areas (see Creating and
Editing Roles [page 177]). For most evaluations, the default roles should be
adequate.

Use the UI security area to quickly assign access permissions to the different areas
of Serena Release Automation.

Use the system security area to assign usage permissions, including the ability to
define security for other users.

Serena Release Automation Guide 175

2. Authorization Realms

Authorization realms are used by authentication realms to associate users with
groups and to determine user access (see Authorization Realms [page 182]). Serena
Release Automation includes both an internal database for storing security
information as well as integration with the Lightweight Directory Access Protocol
(LDAP). LDAP is a widely-used protocol for accessing distributed directory
information over IP networks. If you are implementing a production version of
Serena Release Automation, the LDAP integration is recommended. If you are
evaluating Serena Release Automation, it is not necessary to set up the LDAP
integration—full security is configured and enforced by the server.

3. Create Groups and Define Default Permissions.

Determine default permissions by product area. Global default permissions can be
granted.

4. Create Authentication Realm

The authentication realm is used to determine a user's identity within an
authorization realm. If more than on realm has been configured, user authentication
is determined following the hierarchy of realms defined on the Authentication pane.
When a user attempts to log in, all realms are polled for matching credentials.

5. Add Users

Add users to an authentication realm, then assign them to groups and roles. If your
are using LDAP, you can import users and map them to the security system.

Roles and Permissions
Roles provide the building blocks for the security system. Roles have permissions that
define the actions the roles can perform with product features. Typical actions include
changing or executing an item, such as an application process, or modifying its security
settings. Users or groups assigned to a role are automatically granted the permissions
configured for it. The default roles can be edited and new roles can be created.

Serena Release Automation maps key product features or areas to security roles. Each
area has several permissions defined for it (listed below). When you create a role, you
first specify the product area. Selecting a product area defines the set of permissions
available to the new role—only permissions defined for the area are available.

Generally, permissions fall into one of these groups:

Common Permissions table

Permission Description

Security Enables users to change an item's security settings. For example, a user
with this permission for agents can determine which users can view,
configure, and set security for them.

Write Enables users to add, change, and delete items. A user with this
permission for components can create a component.

Administration

176 Serena® Orchestrated Ops

Permission Description

Read Enables users to read (view) an item, but not change it or create
another of its type. A user with this permission for agents, say, will be
able to see agents within the user interface, but will not be able to
modify them or create another unless granted additional permissions.

Execute Enables users to run processes associated with applications,
components, environments, and resources. Users must also have read
permission for an item before actually executing it.

Default Roles

Serena Release Automation ships with several role types mapped to product areas. Every
area or type has a set of available permissions. The application type, for instance, has the
Manage Snapshots permission in addition to the common permissions (see the Roles and
Permissions [page 176] table. User-defined roles within a type can choose from among
the permissions available for that type.

Every product area has one role typically called Admin or Administrator that has all
permissions available for that area. Deleting a default Admin role for one role type does
not affect the Admin role for another type.

You can quickly grant a role type's permissions to all users using the Default Permissions
tab.

Note: Default permissions cannot be granted for system and UI security.

Creating and Editing Roles

1. Display the Role Configuration pane Settings > Security Role Configuration.

2. From the list of product areas, select the area where you want to add a role.

3. Display the Create Role dialog Create Role [button].

Figure 1. Application Role Permissions

All permission available for this product display.

Serena Release Automation Guide 177

4. Select the permissions you want granted to this role.

All roles have the following permissions available. Other permissions—if any—are
described in the following sections.

Table 1. Permissions Available for Every Role

Permission Description

Security Manage security for the effected feature area.

Write Create, edit, or delete items for this product area.

Read Access or view items for this product area.

Agent Roles

Agent roles define the functions users can perform with agents and agent pools. Available
permissions are read, write, and security, (see Creating and Editing Roles [page 177]).

To add users to agent roles:

1. Display the Security tab for the target agent Resources > Agents/Agent Pools >
[selected agent/agent pool] > Security).

All roles defined for agents and agent pools are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, Serena Release Automation provides an Admin
role with all configured permissions granted. By default, Admin has a single user—
admin.

Application Roles

Application roles define the functions users can perform with applications. In addition to
the standard permissions (see Creating and Editing Roles [page 177], others are:

Application Roles table

Permission Description

Manage Snapshots Create and edit snapshots for this application.

Run Component
Processes

Run associated component processes outside of the
application.

To add users to application roles:

1. Display the Security tab for the target application (see Applications [page 133])
Applications > [selected application] > Security).

All defined roles are displayed.

Administration

178 Serena® Orchestrated Ops

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, Serena Release Automation provides an Admin
role with all configured permissions granted. By default, Admin has a single user—
admin.

Component Template Roles

These roles define the functions users can perform with component templates. Available
permissions are read, write, and security (see Creating and Editing Roles [page 177].

To add users to component template roles:

1. Display the Security tab for the target template Components > Templates >
[selected template] > Security (see Component Templates [page 122]).

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, Serena Release Automation provides an Admin
role with all configured permissions granted. By default, Admin has a single user—
admin.

Component Roles

These roles define the functions users can perform with components. In addition to the
standard permissions, others are available:

Component Roles table

Permission Description

Manage Versions Create and delete versions for this component.

To add users to component roles:

1. Display the Security tab for the target component (see Creating Components [page
102]) Components > [selected component] > Security.

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, Serena Release Automation provides an Admin
role with all configured permissions granted. By default, Admin has a single user—
admin.

Environment Roles

These roles define the functions users can perform with environments (see the Creating
and Editing Roles [page 177]

To add users to environment roles:

Serena Release Automation Guide 179

1. Display the Security tab for the target environment Components > [selected
component] > Security.

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, Serena Release Automation provides an Admin
role with all configured permissions granted. By default, Admin has a single user—
admin.

License Roles

These roles define the functions users can perform with licenses. Available permissions
are read, write, and security (see the Creating and Editing Roles [page 177]).

To add users to license roles:

1. Display the Security tab for licenses (see Licenses [page 189]) Settings >
Licenses > Security.

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, Serena Release Automation provides an Admin
role with all configured permissions granted.

By default, Admin has a single user— admin.

Resource Roles

These roles define the functions users can perform with resources. Available permissions
are read, write, execute, and security, (see Creating and Editing Roles [page 177].

To add users to resource roles:

1. Display the Security tab for the target resource Resources > [selected resource]
> Security). For resource groups: Resources > Resource Groups > [Edit Group
action] > Security.

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, Serena Release Automation provides Admin role
with all configured permissions granted. By default, Admin has a single user— admin.

Default Permissions
Default permissions can be set globally for all users for a product area, or for individual
user groups within an area. By default, a product areas' permissions are not enabled for
any user or group (except for the admin user which has all permissions for all role types
granted). Use the Default Permissions tab to set default permissions, for both the groups
you create and those shipped with the product.

Users added to a group inherit the group's default permissions.

Administration

180 Serena® Orchestrated Ops

Setting Default Permissions

To set default permissions:

1. Display the Default Permissions pane Settings > Default Permissions.

2. From the list of product areas, select the area you want to use.

Default Permissions for Agent Area

Selecting an area displays the permissions available for it. User-defined groups are
configured independently (see Authorization Realms [page 182]).

3. Check the permissions you want to grant for the selected group.

The following table lists the available permission.

Product Area Privileges table

Role Read Write Security Execute Snapshots Comp.
Procss.

Versions

Agent X X X

Agent Pool X X X

Application X X X X X X

Component X X X X X

Component
Template

X X X

Serena Release Automation Guide 181

Role Read Write Security Execute Snapshots Comp.
Procss.

Versions

Environment X X X X

License X X X

Resource X X X X

Resource
Group

X X X X

Authorization Realms
The Authorization Realms pane is used to create user groups and authorization realms.
Authorization realms associate users with roles and work with authentication realms to
determine which users can access Serena Release Automation. The authorization realms
available are:

Internal Storage
Uses internal role management. The default authorization realm— Internal
Security—is this type.

LDAP
Uses external LDAP role management.

Creating an LDAP Authorization Realm

An LDAP authorization realm uses an external LDAP server for authorization.

To create an LDAP authorization realm:

1. Display the Create Authorization Realm dialog Settings > Security >
Authorization > Create Authorization Realm [button].

2. Ensure that LDAP is selected in the Type list box, then specify the following:

LDAP Authorization Realm Properties table

Field Description

User
Group
Attribute

Name of the attribute that contains role names in the user directory
entry. If user groups are defined in LDAP as an attribute of the user,
the Group Attribute configuration must be used

Group
Search
Base

Base directory used to execute group searches, such as
ou=employees,dc=mydomain,dc=com.

Administration

182 Serena® Orchestrated Ops

Field Description

Group
Search
Filter

LDAP filter expression used when searching for user entries. The
name will be substituted in place of 0 in the pattern, such as uid={0}.
If this is not part of the DN pattern, wrap the value in parenthesis,
such as ud=(0).

Group
Name

Directory name used to bind to LDAP for searches, such as
cn=Manager,dc=mycompany,dc=com. If not specified, an anonymous
connection will be made. Required if the LDAP server cannot be
anonymously accessed.

Search
Group
Subtree

Searches the subtree for the roles if checked.

Creating Authorization Groups

Groups are logical containers that serve as a mechanism to grant permissions to multiple
users; members automatically share a group's permissions (see Default Permissions
[page 180]). Permissions are granted to groups (or all users), not individual users.
Additionally, when a group is assigned a role, its members are automatically assigned the
role as well (see Roles and Permissions [page 176]).

To create a group:

1. Display the Create Group dialog Settings > Security > Authorization > Groups
> Create Group [button].

2. Provide a name for the group.

The name appears in the Default Permissions pane (see Default Permissions [page
180]).

3. Select an authorization realm.

Groups are only valid for the selected realm.

Serena Release Automation provides several default groups and users, which are listed in
the following table. The default groups and users are part of the internal security
authorization realm.

Default Groups table

Group Users

Admin Group admin

Approve Group approve

Configuration Group config

Serena Release Automation Guide 183

Group Users

Deploy Group deploy

Authentication Realms
The Authentication Realms pane is used to create authentication realms and users.
Authentication realms determine a user's identity within an authorization realm.
Authentication is determined following the hierarchy of realms displayed on the
Authentication Realms pane. In the example below, authentication will first be determined
in the Internal Security realm followed by the LDAP realm. A user listed in the LDAP realm
may have different authorizations from those in the other realms.

Authentication Realms Precedence

If you have a number of authentication realms, you can reorder them using the operation
tools. Each realm can be moved up to a higher priority, moved down, or deleted by using
the operation tools.

Creating an Authentication Realm

1. Display the Create New Authentication Realm Settings > Security >
Authentication > Create New Realm.

2. Enter a name and description and other basic parameters:

Administration

184 Serena® Orchestrated Ops

Allowed Login
Attempts

Number of attempts allowed. A value of 0 means unlimited
attempts.

Authorization
Realm

Requires that the authorization realm was previously
created.

Type Selecting Internal Storage completes the process.

Creating an LDAP Authentication Realm

If you create an LDAP type of authentication realm, you need to provide information about
your LDAP installation:

LDAP Authentication Realm Properties table

Field Description

Context
Factory

Context factory class used. This may vary depending upon your Java
implementation. The default for Sun Java implementations:
com.sun.jndi.ldap.LdapCtxFactory.

LDAP URL URL to the LDAP server beginning with ldap:// or ldaps://. Separate
additional servers with spaces.

Use DN
Pattern

User directory entry pattern; the name will be substituted in place of 0 in
the pattern, such as cn={0},ou=employees,dc=yourcompany,dc=com.

User
Search
Base

Base directory used to execute group searches, such as
ou=employees,dc=mydomain,dc=com.

User
Search
Filter

LDAP filter expression used when searching for user entries. The name
will be substituted in place of 0 in the pattern, such as uid={0}. If this is
not part of the DN pattern, wrap the value in parenthesis, such as
ud=(0).

Search
User
Subtree

If the LDAP user names are case sensitive, check the box to treat
different-case names as different users.

Search
Connection
DN

Directory name used to bind to LDAP for searches, such as
cn=Manager,dc=mycompany,dc=com. If not specified, an anonymous
connection will be made. Required if the LDAP server cannot be
anonymously accessed.

Search
Connection
Password

Password used when connecting to LDAP to perform searches.

Serena Release Automation Guide 185

Field Description

Name
Attribute

Contains the user's name, as set in LDAP.

Email
Attribute

Contains the user's email address, as set in LDAP.

Once configuration is complete, when a new user logs on using their LDAP credentials,
they will be listed on the Authentication Realm Users pane. It is best practice not to
manage user passwords nor remove users from the list. If an active user is removed from
Serena Release Automation, they will still be able to log onto the server as long as their
LDAP credentials are valid.

Authentication Realm Users

When adding a new user, the user name and password is what the individual will use
when logging into Serena Release Automation. The user name will also be displayed when
setting up additional security.

Once the new user has been successfully added to a group, you might need to configure
additional permissions. This can happen when the new user is mapped to a group that has
limited permissions.

Importing LDAP Users

Unless using LDAP authorization realm, valid LDAP users can log on but will have no
permissions. To provide permissions, import them first and define their permissions before
they log on. You can import users from existing LDAP systems into Serena Release
Automation-managed authentication realms.

To Import LDAP Users

1. Display the Create User dialog Settings > Security > Authentication Realms >
[select LDAP realm] > Import User [button].

2. Enter the name of the user.

If you enter a search filter in the Username field, the filter must be enclosed in
parentheses.

Tokens
Tokens provide authorization for agents and users. Agents use tokens when performing
process steps and communicating with the Serena Release Automation server and
external services. Users can use tokens with the CLI client (see Command Line Client
(CLI) [page 220]), and instead of supplying a user name and password in certain
situations.

You can create tokens in addition to those shipped with the product.

To create a token:

Administration

186 Serena® Orchestrated Ops

1. Display the Create New Token dialog Settings > Security > Tokens > Create
New Token [button].

2. From the User drop-down list box, select the user who will use the token.

3. Specify the expiration date and time.

Tokens can be used immediately after being created.

User Interface Security
These roles determine which parts of the Serena Release Automation web application
users can access. Each tab, such as Reports, on the web application's home page can be
restricted. Available permissions are:

Web UI Permissions table

Permission Description

Resources Access the Resources tab (see Resources [page 127]).

Applications Access the Applications tab (see Applications [page 133]).

Components Access the Components tab (see Components [page 101]).

Configuration Access the Configuration tab (see Configuration) .

Reports Access the Reports tab (see Reports [page 156]) .

Deployment
Calendar

Access the Calendar tab (see Scheduling Deployments [page
156].

Work Items Access the Work Items tab (see Work Items [page 147]).

Settings Access the System Settings [page 189].

Dashboard Access the Dashboard tab.

To add users to Web UI roles:

1. Display the System Security tab Settings > Security > Security).

For resource groups: Resources > Resource Groups > [Edit Group action] >
Security.

All defined roles are displayed.

2. Use the Add Role Member action for a specific role, then select the user.

All users are available. As shipped, Serena Release Automation provides the
following roles:

Default Web UI Roles table

Serena Release Automation Guide 187

D:\bld\SOO4_X\SOO4_X-DOC\Documentation\output\sra_guide\DitaOut\concconf.xml#concept906

Role Description

Deployment Engineer Access the Reports, Calendar, Work Items, and Dashboard
tabs.

Approver Access the Reports, Work Items, and Dashboard tabs.

Administrator Access all tabs.

Configuration
Engineer

Access all tabs except Calendar and Work Items.

System Security
These roles define the functions users can perform with the Serena Release Automation
server (also referred to as system security). Available permissions are:

Server Permissions table

Permission System Settings Description

Security Manage security configuration; users without this permission
cannot access or change the security functions.

Manage Plug-ins Grants users the ability to install new plug-ins (see Installing
Plug-ins [page 196]).

Create
Subresources

Ability to create subresources (see Resources [page 127]).

Create\Manage
Resource Roles

Create and delete resource roles (see Resource Roles [page
130]).

Create
Components

Create components (see Creating Components [page 102]).

Create
Applications

Create applications (see Creating Applications [page 135]).

Create
Component
Templates

Create component templates (see Creating a Component
Template [page 123].

Manage Licenses Add and remove licenses (see Licenses [page 189]).

To add users to system security roles:

1. Display the System Security tab Settings > Security > Security.

All defined roles display.

Administration

188 Serena® Orchestrated Ops

2. Use the Add Role Member action for a specific role, then select the user.

All users are available.

As shipped, Serena Release Automation provides Configuration Manager and
System Administrator roles; the latter has all configured permissions granted. By
default, System Administrator role has a single group— Admin Group (with user
admin), and the Configuration Manager role also has a single group—
Configuration Group (with user config).

System Settings
You can use the System Settings area of the Serena Release Automation web application
to access, create, and/or modify features such as:

• licensing

• logs

• network relays

• email notifications

• plug-in step post-processing scripts

• plug-ins installation

Licenses
The Licenses pane is where you manage user licenses (adding or deleting licenses, and
assigning agents to them). Display the Licenses pane by clicking the Licenses link on the
Settings window Home > Settings > License. You can also access the pane through the
Resources tab Resources > Agents > License.

Licenses Pane

Adding a License

To add a license:

1. Display the Add New License dialog by clicking the Add New License button.

2. Paste the license text supplied by Serena into the License field.

Serena Release Automation Guide 189

3. (Optional) Add a description.

4. Click Save when you are done.

To see information about a license, display the License Details pop-up by clicking the
Details link.

Adding Agents to a License

Agents can be assigned to licenses automatically or manually. This section explains how
to add agents manually. To automatically add agents, ensure that the Automatic License
Management check box on the System Settings pane is checked (see System Settings
[page 189]).

To add an agent to a license manually:

1. Display the Assign Agents to License pop-up by clicking the Assign Agents link for
the intended license.

2. Click the Agents field.

A selection-type pop-up displays.

3. Make a selection from the list of agents that are not already assigned to the license.

4. Select the agent or agents you want to add to the license.

5. Optional. You can filter the listed agents by entering search text into the text field.

6. After select agents, click OK to close the selection pop-up.

7. If you want to restart the selection process, click Reset.

8. When you are finished, click Save.

Modifying or Deleting a License

To modify or update an existing license:

1. Display the Edit License dialog by clicking the Edit link for the license you want to
change.

2. Edit the information shown in the License field.

3. Click Save.

To delete an existing license, click the Delete link for the selected license.

Logging
You can download the Serena Release Automation server log from within the web
application.

To download the log file:

1. Display the Output Log dialog by clicking the Output Log link on the Settings pane.

2. Click the Download Log button to save the file.

Administration

190 Serena® Orchestrated Ops

3. Optional. You can download the file directly from the Settings pane by clicking the
Download link on the Settings pane.

The Serena Release Automation server log file is normally found in the following location:
Serena Release Automation_root\var\log\deployserver.out.

Network Relay
A network relay is used in conjunction with an agent relay. The network relay reverses the
direction of communication through a firewall between the Serena Release Automation
server and agent relay. A network relay is only used when you want the server to connect
to the relay instead of the reverse (which is default). To create a network relay an agent
relay must be created. (See Installing Agent Relays [page 70] to create an agent relay)

To creating a network relay:

1. Display the network pane Home > Settings > System > Create New Network
Relay

2. Enter the name of the network relay.

3. Identify the Host and Port.

4. Indicate the Network Relay will be Active by checking the box.

Notifications
Serena Release Automation can send email notifications whenever user-defined trigger
events occur. Notifications can be sent when a deployment finishes or an approval is
required, for example. Notification recipients are defined with the security system's (see
Serena Release Automation Security [page 175]) LDAP integration. If you have not
already done so, set up LDAP prior to configuring notifications. Serena Release
Automation relies on LDAP and an associated e-mail server to send notifications.

Note: Serena Release Automation requires an external SMTP mail server to
send notifications. For information about configuring a mail server, see System
Settings [page 189].

When setting up notifications, you select both the triggering events and the role, which is
inherited from the security system, to determine which users will receive notification. For
example, it is common for an administrator or environment owner to be notified when a
work item (as part of the approval process) has been generated. The default notification
scheme, which sends notifications to the application and admin default roles (see Serena
Release Automation Security [page 175]), can be edited or you can create your own
scheme.

To set up your own notifications, display the Notifications pane Settings >
Notifications.

Serena Release Automation Guide 191

Notification Schemes

Configure the new Scheme. Here, you will be setting up the who/when for notifications.
Once configured, you can come back add additional Entries to the Scheme or edit an
existing one.

Notification Type

The process type is determined mainly by the type of recipient. For example, a
deployment engineer would be interested in being notified about a failed deployment.

Notification Target

When setting the target, the application option will only send out notifications when the
event selected above corresponds to an Application. For example, the "Process Success"
event, when pared with the "Application" Target would trigger a notification when a
Process (an application deployment) is successful. Similarly, the same event type, when
used with the "Environment" target would instigate a notification when a successful
deployment has been run in an Environment, such as, SIT, PROD).

Administration

192 Serena® Orchestrated Ops

Notification Role

The Role corresponds to those set in the Security System. Any individual assigned the
Role you select will receive an e-mail.

Template Name

The available templates are provided by default and should meet all your needs, including
formatting the email being sent. Which template you use is based on why you want to set
up a notification and the recipients of the notification. However, if the default templates
do not suit your needs, you can create your own.

Template Description

Application deployment
failure/success

Sends notifications about a specific application to the
specified users, based on the role setting.

Task readied/created/
completed

Used to report back on the state of manual tasks.

Deployment readied A specialized email template for letting people know a
deployment has been prepared.

Approval created/failed These templates are used to notify the status of an
approval.

Serena Release Automation Guide 193

Once you have the entry done, add others using the same process. If you want to use the
new notification scheme with existing applications, modify the application settings.

Related Topics

• Creating Notification Templates [page 194]

Creating Notification Templates

Notification Templates are XML files located in the server’s conf/server/notification-
template file folder. If the default notification templates do not suit your needs, you can
create new ones.

To create a new notification template:

1. Start a new XML file.

2. Enter Script. (Notification templates only supports Velocity Reports)

3. Save file in the server's conf/server/notification-template file folder.

4. Restart the server.

Related Topics

• Notifications [page 191]

Post-Processing Scripts
Serena Release Automation component processes perform post-processing whenever a
plug-in step finishes execution. Typically, post-processing scripts ensure that expected
results occurred. You can use your own JavaScript script instead by instructing Serena
Release Automation to use your script when you define the step, see Process Editor [page
111].

When a step finishes, the agent performing the step will run your script (the script must
be written in JavaScript). When the agent runs the script, it first loads the server log file
and finds the exit code property of the target step using regular expressions defined in
the script. It then applies any actions defined in the script before processing the next
step.

To create a script:

1. Display the Edit Script dialog Settings > Post Processing Scripts.

2. Enter a name for the script into the Name field. The name must match the name you
specified when you defined the process step, (see Process Editor [page 111]).

3. Enter or paste the script into the Script Body field. See the roll-over help next to
the field for information about the properties and variables available for user-defined
scripts.

The Serena Release Automation server log file is normally found in the following location:
Serena Release Automation_root\var\log\deployserver.out.

Administration

194 Serena® Orchestrated Ops

Preview Version Cleanup
To preview the component versions that will be archived the next time an archive file is
created, click the Preview Version Cleanup link. Using the link displays the Version
Cleanup Preview dialog, which lists the to-be-archived component versions.

Output Log
You can download the Serena Release Automation server log from within the web
application.

To download the log file:

1. Display the Output Log dialog by clicking the Output Log link on the Settings pane.

2. Click Download Log to save the file.

3. Optional. You can download the file directly from the Settings pane by clicking the
Download link on the Settings pane.

The Serena Release Automation server log file default location is: Serena Release
Automation_root\var\log\deployserver.out.

Locks
A lock is a routinely used to ensure that processes do not interfere with one another.
Normally, once a lock is no longer needed it is released. Sometimes a lock will not get
released and its associated process will be unable to complete. The lock management
feature enables you to quickly identify and resolve abnormal lock conditions.

Managing Locks

A running process with a lock, like all active processes, appears on the Dashboard tab
with a status of Running. If a locked process takes longer to complete than expected, you
can cancel the process from the Dashboard, or investigate it fully with the Settings tab.

1. Display the Lock pane by clicking the Locks link on the Settings tab Home >
Settings > Locks.

The Lock pane displays the following information:

Lock Fields table

Field Description

Name The name identifies the lock. The displayed name is a
concatenation of the component or application name (depending
on type) + process name + resource name.

Type Indicates whether the process creating the lock is a component-
or application-type. Locks can only be applied to component or
application processes.

Serena Release Automation Guide 195

Field Description

Component/
Application

Displays the name of the component or application containing the
lock. Clicking an item displays (depending on the type) the
Component pane, or Application pane, where you can investigate
the lock.

Resource/
Environment

Displays the name of the resource or environment containing the
lock. Clicking an item displays (depending on the type) the
Resource pane, or Environment pane.

Process Displays the name of the process containing the lock. Clicking an
item displays the process in the process editor.

Actions Lists the available actions.

2. Resolve the lock by selecting an action:

Lock Actions table

Action Description

View
Request

Displays the process log for the process containing the lock. You can
use the Actions field on the displayed pane to see the name of the
process step causing the lock.

Release Releases the lock which enables the associated process to continue
processing.

If the Serena Release Automation server and or agents go down while a locked process is
running, Serena Release Automation will automatically restore any interrupted processes
along with any locks they might contain once service is restored.

Installing Plug-ins
Plug-ins can be installed at any time. You can download a zip file that contains all the
plug-ins from http://www.serenasupport.com.

To download the plug-ins:

1. Go to http://support.serena.com/Case/CaseHome.aspx and log in using your
customer account.

2. Browse to the My Downloads tab.

3. From the Please Select Product drop-down, select Serena Release Automation.

4. Download the plug-ins zip file to the platform on which you want to deploy it.

Note: You do not need to decompress the .zip file.

Administration

196 Serena® Orchestrated Ops

http://www.serenasupport.com
http://support.serena.com/Case/CaseHome.aspx

To install the downloaded plug-ins:

1. From the Automation Plug-ins pane, display the Load Plug-in dialog Settings >
Plugins > Load Plugin [button].

2. Enter the path to the compressed plug-in (.zip) file and click Submit.

After the plug-ins load process completes successfully, the plug-ins are listed on the
Automation Plug-ins pane. Once installed, plug-in functionality is available immediately.

Configuration
The Serena Release Automation Configuration tool enables you to directly manage
application, component, and environment configuration data.

Configuration data is manipulated at the application, component, and environment levels:

Component

A component refers to any file that you want to include in the build process;
components are associated with the configuration data required to deploy them.

Application

Applications represent a group of components deployed together by component
version and environment. Applications also map the hosts and machines (called
resources) components require within every environment.

Environment

An environment is a collection of resources that host a Serena Release Automation
application.

Serena Release Automation Guide 197

Configuration tab

Access the Configuration Tool by clicking on the Configuration tab.

Application Configuration
You attach properties to an application by using the Configuration Tool's Application:
Add Property button. Typical application-level properties include items that are the same
in all environments, such as base-install paths.

Figure 1. Application Properties panel

Administration

198 Serena® Orchestrated Ops

Access the Configuration Tool Application panel by clicking on an application in the
Application/Component/Environment list box.

Adding Application Configuration Properties

To add a property to the selected application:

1. Use the Add Property button.

The Edit Property pop-up displays.

Edit Property pop-up

2. Enter the property's name in the Name field.

While component fields can be of any size, configuration properties are restricted to
4,000 characters.

3. Enter a description of the property in the Description field.

4. Specify whether the property is secure by using the Secure check box.

Secure properties are stored encrypted and displayed obscured in Serena Release
Automation's user interface.

5. Enter a value for the property in the Value field.

6. To save the property, click Save, or to discard your work click Cancel.

Modifying and Deleting Application Configuration Properties

Modifying Application Configuration Properties

Serena Release Automation Guide 199

To modify a previously created property, use the Edit link in the Action column to display
the Edit Property pop-up.

Deleting Application Configuration Properties

To delete a property, use the Delete link in the Action column.

Component Configuration
The Serena Release Automation Configuration tab enables you to configure applications
and their components from a single location. Configuration data is manipulated at the
application, component, and environment levels:

component

A component refers to any file that you want to include in the build process;
components are associated with the configuration data required to deploy them.

application

Applications represent a group of components deployed together by component
version and environment. Applications also map the hosts and machines (called
resources) components require within every environment.

environment

An environment is a collection of resources that host a Serena Release Automation
application.

Access the Configuration Tool by clicking on the Configuration tab.

Environment Configuration
The Serena Release Automation Configuration tab enables you to configure applications
and their components from a single location. Configuration data is manipulated at the
application, component, and environment levels:

component

A component refers to any file that you want to include in the build process;
components are associated with the configuration data required to deploy them.

application
Applications represent a group of components deployed together by component
version and environment. Applications also map the hosts and machines (called
resources) components require within every environment.

environment

An environment is a collection of resources that host a Serena Release Automation
application.

Access the Configuration Tool by clicking on the Configuration tab.

Administration

200 Serena® Orchestrated Ops

Inventory
The inventory shows what applications and components have been deployed, including
the current versions that are running on the resource within an environment. The
inventory provides complete visibility into the different versions of your applications which
can be tracked back to the original artifacts imported into Serena Release Automation.

There are different views of the current inventory, depending on where in Serena Release
Automation you are. Inventory information is available on the individual Components, for
every application environment, as well as for each resource (agent).

Resources Inventory
If you want to see what Components are sitting on the SIT Environment, go to Resources
and select the agent that is running in the Environment. From here, selecting either the
Component or its Version will take you to the Component's page if you need more
information.

Resource inventory

Component Inventory
Unlike the Resource Inventory, the component inventory tells you what version of the
Component is running on a Resource. For example, if the Component is currently
deployed to multiple machines, they would all be displayed. From here, you can navigate
to the Resource.

Serena Release Automation Guide 201

Component Inventory

Environment Inventory
For any given Application Environment, the environment inventory tells you both what
version of any given Component is running on a particular Resource. If multiple Versions
are running on different Resources, they will all be listed.

Reference
This documentation contains the following reference information:

• Component Source Configuration

▪ Basic Fields [page 203]

▪ File System (Basic) [page 204]

▪ File System (Versioned) [page 205]

▪ Serena Dimensions CM [page 205]

▪ Serena PVCS [page 206]

• Plug-ins [page 207]

▪ Standard Plug-ins [page 217]

▪ Creating Plug-ins [page 209]

• Serena Release Automation Properties [page 217]

• Command Line Client (CLI) [page 220]

Reference

202 Serena® Orchestrated Ops

Basic Fields
These fields appear for all source types; they are displayed when the Create New
Component dialog opens. Other fields, discussed below, are displayed when a source type
is selected.

Fields Available for All Source Types table

Field Description

Name Identifies the component; appears in many UI features. Required.

Description The optional description can be used to convey additional information
about the component. If the component is used by more than one
application, for example, entering "Used in applications A and B" can
help identify how the component is used.

Template A component template enables you to reuse component definitions;
components based on templates inherit the template's source
configuration, properties, and process. Any previously created
templates are listed. A component can have a single template
associated with it. The default value is None.

If you select a template, the Template Version field is displayed which
is used to select a template version. By controlling the version, you
can roll-out template changes as required. The default value is Latest
Version which means the component will automatically use the newest
version (by creation date). See Component Templates [page 122].

Note

If you select a template that has a source configured for it, the dialog
box will change to reflect values defined for the template. Several
fields, including the Source Config Type field, will become populated
and locked.

Source
Config Type

Defines the source type for the component's artifacts; all artifacts
must have the same source type. Selecting a value displays additional
fields associated with the selection. Source-dependent fields are used
to identify and configure the component's artifacts. If you selected a
template, this field is locked and its value is inherited from the
template.

Import
Versions
Automatically

If checked, the source location is periodically polled for new versions;
any found are automatically imported. The default polling period is 15
seconds, which can be changed with the System Settings pane. If left
unchecked, you can manually create versions by using the Versions
pane. By default, the box is unchecked.

Serena Release Automation Guide 203

Field Description

Copy to
CodeStation

This option—selected by default—creates a tamper-proof copy of the
artifacts and stores them in the embedded artifact management
system, CodeStation. If unchecked, only meta data about the artifacts
are imported. Serena recommends that the box be checked.

Default
Version Type

Required. Defines how versions are imported into CodeStation. Full
means the version is comprehensive and contains all artifacts;
Incremental means the version contains a subset of the component's
artifacts. Default value is: Full.

Inherit
Cleanup
Settings

Determines how many component versions are kept in CodeStation,
and how long they are kept. If checked, the component will use the
values specified on the System Settings pane. If unchecked, the Days
to Keep Versions (initially set to -1, keep indefinitely) and Number of
Versions to Keep (initially set to -1, keep all) fields are displayed,
which enable you to define custom values. The default value is
checked.

File System (Basic)
Imports everything in the target directory whenever you import versions. You can set up
a template to auto-increment version numbers. Automatic import is not available for this
source type.

File System (Basic) Source Fields table

Field Description

Base
Path

Defines how the property is presented to users in the Serena Release
Automation editor. This element has several attributes.

Always
Use
Name
Pattern

Used to specify values for a select-box. Each value has a mandatory label
attribute which is displayed to users, and a value used by the property
when selected. Values are displayed in the order they are defined.

Version
Name
Pattern

Defines how the property is presented to users in the Serena Release
Automation editor. This element has several attributes.

Next
Version
Number

Defines how the property is presented to users in the Serena Release
Automation editor. This element has several attributes.

Reference

204 Serena® Orchestrated Ops

Field Description

Save
File
Execute
Bits

Defines how the property is presented to users in the Serena Release
Automation editor. This element has several attributes.

File System (Versioned)
The File System (Versioned) source type interacts with file-system-based artifacts. It
assumes that subdirectories within the base directory are distinct component versions.
File System (Versioned) can automatically import versions into CodeStation.

File System (Versioned) Source Fields table

Field Description

Base
Path

Path to directory containing artifacts. The content of each subdirectory
within the base directory is considered a distinct component version. The
subdirectory with the most recent time-stamp is considered the "latest
version".

Save
File
Execute
Bits

Defines how the property is presented to users in the Serena Release
Automation editor. This element has several attributes:

Serena Dimensions CM
Serena Dimensions CM is a software configuration management tool. To use Serena
Dimensions CM as an artifact source, select Dimensions from the Source Config Type
drop-down list box then configure the type-specific fields described here. For information
about creating components, see Creating Components [page 102].

See Basic Fields [page 203] for information about the standard fields which apply to each
source type.

Serena Dimensions Fields table

Field Description

Username Dimensions CM user name. For information about user impersonation,
see User Impersonation [page 37].

Password Password associated with the Dimensions user name.

DB Name Name of the Dimensions database.

Serena Release Automation Guide 205

Field Description

DB
Connection

Name of the Dimensions connection to be used. A connection/session is
required in order to send or receive commands to/from the database.

Server Server managing the Dimensions database.

Product
Spec

Location of the Dimension-managed artifacts.

Serena PVCS
Serena PVCS is a version control management tool. To use Serena PVCS as an artifact
source, select PVCS from the Source Config Type drop-down list box then configure the
type-specific fields described here. For information about creating components, see
Creating Components [page 102].

See Basic Fields [page 203] for information about the standard fields which apply to each
source type.

Serena PVCS Fields table

Field Description

PCLI Path Path to the PVCS CLI tool.

Database
Path

Path to the PVCS database.

Base Path Base path of the repository.

Project Path Path to the project.

Archive Path The location of the archive relative to the database path.

Includes The patterns to match files to upload. The wild card ** indicates every
directory and the wildcard * indicates every file. So, the pattern dist/
**/* would retrieve the entire file tree underneath the dist directory.

Excludes The patterns to exclude files to upload.

User Serena PVCS username. For information about user impersonation, see
User Impersonation [page 37]

Password Password associated with the Serena PVCS username.

Preserve
Execute
Permissions

To save file execute permissions with the files, select this check box.
Not selected by default.

Reference

206 Serena® Orchestrated Ops

Field Description

Filter By Default is None (no filter). Use to filter polled versions based on:
Provision|Label|Promotion Group, and specify the value for the
filter using the Filter Value field.

Filter Value If you specify a versions filter in the Filter By field, use this field to
specify a value for the filter.

Import
Versions
Automatically

If you want the configured version's source polled periodically for new
versions, select this check box. Not selected by default.

Copy to
CodeStation

If selected, artifacts will be copied from the given source into the
server's CodeStation repository from which they can be retrieved
during deployments. Selected by default.

Default
Version Type

Full|Incremental. The type of versions to create by default on version
imports. Full is the default.

Inherit
Cleanup
Settings

If selected, this component inherits version cleanup configuration from
the system settings. Selected by default.

Run process
after creating
a new
version

Not selected by default.

Plug-ins
Serena Release Automation plug-ins provide tools for creating component processes.
Plug-ins consist of configurable steps which can be thought of as distinct pieces of
automation. By combining steps in the Serena Release Automation editor, you can create
fully-automated deployment processes. In addition to basic plug-ins, others integrate
many third-party tools into Serena Release Automation, such as application servers and
software configuration management products. For example, the Tomcat and WebSphere
plug-ins provide steps that start and stop those servers, install and uninstall applications,
as well as perform other tool-specific tasks. Finally, you can write your own plug-in (see
Creating Plug-ins [page 209]).

A plug-in consists of a number of steps, which varies from plug-in to plug-in. Each step
consists of a number of properties, a command that performs the function associated with
the step, and post-processing instructions (typically used to ensure that expected results
occurred). Step properties can serve a wide variety of purposes, from providing
information required by the step's command, to supplying some or all of the actual
command itself. When you create a process, you drag steps onto the editor's design area
and define their properties as you go. Property values can be supplied when defining a
component process or at run-time. The process flow is defined by drawing connections
between steps. In the following illustration, you can see a series of plug-in steps and the
connections between them. For information about creating component processes, see

Serena Release Automation Guide 207

Component Processes [page 109]; for information about creating your own post-
processing scripts, see Post-Processing Scripts [page 194].

Figure 1. Example Process

Plug-ins at Run-time
Component processes are run by agents installed in the target environment. For a process
to run successfully, the agent must have access to all resources, tools, and files required
by the plug-in steps used in the process. When installing an agent, ensure that:

• The agent running the process has the necessary user permissions to execute
commands and access any required resources. This typically entails granting

Reference

208 Serena® Orchestrated Ops

permissions if an external tool is installed as a different user; installing the agent as
a service; or impersonating the appropriate user (see User Impersonation [page
37]).

• Any external tools required by plug-in steps are installed in the target environment.

• The required minimum version of any external tool is installed.

For information about installing agents, see Agent Installation [page 64].

Creating Plug-ins
A plug-in consists of two mandatory XML files–plugin.xml and upgrade.xml–along with
any supporting script files required by the plug-in.

The plugin.xml file defines the steps comprising the plug-in; a plug-in's functionality is
defined by its steps. Each step is an independently configurable entity in the Serena
Release Automation editor.

The upgrade.xml file is used to upgrade the plug-in to a new version. Optionally, you can
include an info.xml file which contains a version ID and other information. Although
optional, Serena recommends the use of the info.xml file.

A plug-in step is defined by a <step-type> element that contains: one <properties>
element, one <command> element, and one <post-processing> element. The
<properties> element is a container for <property> child elements, and can contain any
number of <property> elements. Property values can be supplied at design- or run-time.
The <post-processing> element provides error-handling capabilities and sets property
values that can be used by other steps. The <command> element performs the step's
function. The function can be defined completely by the element, or be constructed in part
or entirely from the step's properties at design- or run-time.

In addition to a step's own properties, a command has access to properties set earlier by
other steps within the process, to properties set by the application that invoked the
component process, as well as to those on the target environment and resource. Step
property values become unavailable once the component process ends.

Plug-in steps are performed by an agent installed in the target environment, which means
that plug-ins can be written in any scripting language as long as the agent can access the
required scripting tools on the host. Once a plug-in is created, upload it into Serana
Release Automation to make it available to users.

To upload a plug-in

1. Create a ZIP archive that contains the XML files (plugin.xml and upgrade.xml) along
with any scripts required by the plug-in.

2. Import the ZIP file with the Automation Plug-ins pane Settings > Automation
Plugins > Load Plugin.

The plugin.xml File

A plug-in is defined with the plugin.xml file. The structure of this file consists of a header
element and one or more step-type elements. The header identifies the plug-in. Each
step-type element defines a step; steps are available to users in the Serana Release
Automation process editor and used to construct component processes.

Serena Release Automation Guide 209

After the document type declaration, the plugin root element identifies the XML schema
type, PluginXMLSchema_v1.xsd, which is used by all plug-ins. The following presents the
basic structure of plugin.xml:

<?xml version="1.0" encoding="UTF-8"?>
<plugin xmlns="http://www.serena.com/PluginXMLSchema_v1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<header>

<identifier id="plugin_id" version="version_number" name="Plug-in Name"/>
<description/>
<tag>Plugin_type/Plugin_subtype/Plugin_name</tag>

</header>
<step-type name="Step_Name">

<description/>
<properties>

<property name="property_name" required="true">
<property-ui type="textBox" label="Driver Jar"

description="The full path to the jdbc driver jar to use."
default-value="${p:resource/sqlJdbc/jdbcJar}"/>

</property>
</properties>
<post-processing>

<![CDATA[
if (properties.get("exitCode") != 0) {

properties.put("Status", "Failure");
}
else {

properties.put("Status", "Success");
}

]]>
</post-processing>
<command program="${path_to_tool">

<arg value="parameters_passed_to_tool"/>
<arg path="${p:jdbcJar}"/>
<arg file="command_to_run"/>
<arg file="${PLUGIN_INPUT_PROPS}"/>
<arg file="${PLUGIN_OUTPUT_PROPS}"/>

</command>
</step-type>

</plugin>

<header> Element

The mandatory header element identifies the plug-in and contains three child elements:

Reference

210 Serena® Orchestrated Ops

<header>
Child
Elements

Description

<identifier> This element's three attributes identify the plug-in:

• version

API version (the version number used for upgrading plug-ins is
defined in the info.xml file).

• id

Identifies the plug-in.

• name

The plug-in name appears on Serana Release Automation's web
application Automation Plugins pane.

All values must be enclosed within single-quotes.

<description> Describes the plug-in; appears on Serana Release Automation's web
application Automation Plugins pane.

<tag> Defines where the plug-in is listed within the Serana Release
Automation editor's hierarchy of available plug-ins. The location is
defined by a string separated by slashes. For example, the Tomcat
definition is: Application Server/Java/Tomcat. The Tomcat steps
will be listed beneath the Tomcat item, which in turn is nested within
the other two.

The following is a sample header definition:

<header>
<identifier version="3" id="com.&company;.air.plugin.Tomcat"name="Tomcat"/>
<description>
The Tomcat plugin is used during deployments to execute Tomcat run-book
automations and deploy or undeploy Tomcat applications.

</description>
<tag>Application Server/Java/Tomcat</tag>

</header>

Plug-in Steps: <step-type> Element

Plug-in steps are defined with the step-type element; each step-type represents a
single step in the Serana Release Automation process editor. A step-type element has a
name attribute and several child elements: description, properties, command, and
post-processing.

Serena Release Automation Guide 211

The mandatory name attribute identifies the step. The description and name appear in
Serana Release Automation's web application.

<step-type name="Start">
<description>Start Apache HTTP server</description>

Step Properties: <properties> Element

The properties element is a container for properties which are defined with the property
tag. Each step has a single properties element; a properties element can contain any
number of property child elements.

A property tag has a mandatory name attribute, optional required attribute, and two
child elements, property-ui and value, which are defined in the following table.

Reference

212 Serena® Orchestrated Ops

<property> Element table

<property>
Child
Elements

Description

<property-
ui>

Defines how the property is presented to users in the Serana Release Automation
editor. This element has several attributes:

• label

Identifies the property in the editor's Edit Properties dialog box.

• description

Text displayed to users in the associated roll-over help box.

• default-value

Property value displayed when the Edit Properties dialog box is displayed; used if
unchanged.

• type

Identifies the type of widget displayed to users. Possible values are:

▪ textBox

Enables users to enter an arbitrary amount of text, limited to 4064 characters.

▪ textAreaBox

Enables users to enter an arbitrary amount of text (larger input area than
textBox), limited to limited to 4064 characters.

▪ secureBox

Used for passwords. Similar to textBox except values are redacted.

▪ checkBox

Displays a check box. If checked, a value of true will be used; otherwise the
property is not set.

▪ selectBox

Requires a list of one or more values which will be displayed in a drop-down list
box. Configuring a value is described below.

<value> Used to specify values for a selectBox. Each value has a mandatory label attribute
which is displayed to users, and a value used by the property when selected. Values
are displayed in the order they are defined.

Here is a sample <property> definition:

Serena Release Automation Guide 213

<property name="onerror" required="true">
<property-ui type="selectBox"

default-value="abort"
description="Action to perform when statement fails: continue, stop, abort."
label="Error Handling"/>

<value label="Abort">abort</value>
<value label="Continue">continue</value>
<value label="Stop">stop</value>

</property>

<command> Element

Steps are executed by invoking the scripting tool or interpreter specified by the
<command> element. The <command> element's program attribute defines the location of
the tool that will perform the command. It bears repeating that the tool must be located
on the host and the agent invoking the tool must have access to it. In the following
example, the location of the tool that will perform the command–the Java-based scripting
tool groovy in this instance–is defined.

<command program='${GROOVY_HOME}/bin/groovy'>

The actual command and any parameters it requires are passed to the tool by the
<command> element's <arg> child element. Any number of <arg> elements can be used.
The <arg> element has several attributes:

<arg> Element Attributes table

Attribute Description

<value> Specifies a parameter passed to the tool. Format is tool-specific; must be
enclosed by single-quotes.

<path> Path to files or classes required by the tool. Must be enclosed by single-
quotes.

<file> Specifies the path to any files or classes required by the tool. Format is
tool-specific; must be enclosed by single-quotes.

Because <arg> elements are processed in the order they are defined, ensured the order
conforms to that expected by the tool.

<command program='${GROOVY_HOME}/bin/groovy'>
<arg value='-cp' />
<arg path='classes:${sdkJar}:lib/commons-codec.jar:

lib/activation-1.1.1.jar:
lib/commons-logging.jar:lib/httpclient-cache.jar:
lib/httpclient.jar:lib/httpcore.jar:
lib/httpmime.jar:lib/javamail-1.4.1.jar' />

<arg file='registerInstancesWithLB.groovy' />

Reference

214 Serena® Orchestrated Ops

<arg file='${PLUGIN_INPUT_PROPS}' />
<arg file='${PLUGIN_OUTPUT_PROPS}' />

</command>

The <arg file='${PLUGIN_INPUT_PROPS}' />

specifies the location of the tool-supplied properties file.

The <arg file='${PLUGIN_OUTPUT_PROPS}' />

specifies the location of the file that will contain the step-generated properties.

Note: New lines are not supported by the <arg> element and are shown in this
example only for presentation.

The <post-processing> Element

When a plug-in step's <command> element finishes processing, the step's mandatory
<post-processing> element is executed. The <post-processing> element sets the
step's output properties (step name/property name, see Serena Release Automation
Properties [page 217]) and provides error handling. The <post-processing> element can
contain any valid JavaScript script (unlike the <command> element, <post-processing>
scripts must be written in JavaScript). Users can also provide their own scripts when
defining the step in the Serana Release Automation editor, see Post-Processing Scripts
[page 194]. Although not required, Serena recommendeds that scripts be wrapped in a
CDATA element.

You have access to a java.util.Properties variable called properties. The properties
variable has several special properties: exitCode contains the process exit code, and
Status contains the step's status. A Status value of Success means the step completed
successfully.

Another available variable— scanner—can scan the step's output log (scanning occurs on
the agent) and take actions depending on the results. scanner has several public
methods:

• register(String regex, function call) registers a function to be called when
the regular expression is matched.

• addLOI(Integer lineNumber) adds a line to the lines of interest list, which are
highlighted in the Log Viewer; implicitly called whenever scanner matches a line.

• getLinesOfInterest() returns a java.util.List of lines of interest; can be used to
remove lines. scan() scans the log. Use after all regular expressions are registered.

The post-processing script can examine the step's output log, and take actions based on
the result. In the following code fragment, scanner.register() registers a string with a
regular expression engine, then takes an action if the string is found. Once all strings are
registered, it calls scanner.scan() on the step's output log line by line.

![CDATA[
properties.put("Status", "Success");
if (properties.get("exitCode") != 0) {

Serena Release Automation Guide 215

properties.put("Status", "Failure");
}
else {

scanner.register("(?i)ERROR at line", function(lineNumber, line) {
var errors = properties.get("Error");
if (errors == null) {

errors = new java.util.ArrayList();
}
errors.add(line);
properties.put("Error", errors);
properties.put("Status", "Failure");

});
.
.
.
scanner.scan();
var errors = properties.get("Error");
if (errors == null) {

errors = new java.util.ArrayList();
}
properties.put("Error", errors.toString());

}
]]

You can use post-processing scripts to set output properties that can be used in other
steps in the same process, which enables complex workflows. Reference prior step output
properties this way:

${p:stepName/propName}

Upgrading Plug-ins

To create an upgrade:

1. Increment the number of the version attribute of the <identifier> element in
plugin.xml.

2. Create a <migrate> element in upgrade.xml with a to-version attribute containing
the new number.

3. Place the property and step-type elements that match the updated plugin.xml file
within this element, as shown in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<plugin-upgrade

xmlns="http://www.&company;.com/UpgradeXMLSchema_v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<migrate to-version="3">
<migrate-command name="Run SQLPlus script">

<migrate-properties>
<migrate-property name="sqlFiles" old="sqlFile"/>

</migrate-properties>
</migrate-command>

Reference

216 Serena® Orchestrated Ops

</migrate>
<migrate to-version="4">

<migrate-command name="Run SQLPlus script" />
</migrate>
<migrate to-version="5">

<migrate-command name="Run SQLPlus script" />
</migrate>

</plugin-upgrade>

Of course, you can also make a script-only upgrade, that is, an upgrade that contains
changes to the step's associated scripts and files but does not change plugin.xml. This
mechanism can be useful for plug-in development and for minor bug-fixes/updates.

The info.xml File

Use the optional info.xml file to describe the plug-in and provide release notes to users.
The file's <release-version> element can be used for version releases.

Standard Plug-ins
Serena Release Automation also includes a standard set of automation steps that can be
used to add additional automation to any process. These will typically be used for
advanced processes or where there is no standard integration step available from one of
the integrations.

Shell Integration
The Shell integration consists of a single step that you can include in any deployment
process or other process. The most common use case opening and running a shell script
on the target machine. If the step is used within a larger process, ensure that you set the
order correctly. For example, if you have to run a shell script prior to executing another
process, you will need to add the Shell step above the other step.

Serena Package Manager
This is for advanced usage. The steps work in conjunction with Serena Release
Automation to create and manage application packages for deployments. These steps will
not generally be used as part of a regular deployment.

Serena Release Automation Properties
A step has access to properties set earlier by other steps within the process, to properties
set by the application that invoked the component process as well as those on the target
environment and resource. Step property values become unavailable once the component
process ends.

Every item from the table below will use this format: ${p:version.name}

Serena Release Automation Guide 217

Serena Release Automation Properties table

Property Description

version.name A user defined name to distinguish the version from
others. A version name is entered when a new version
is imported.

version.id The number assigned to the version. A version id is
created when a new version is imported in CodeStation.

component.name A user defined name to distinguish it from other
components. A component name is entered when
creating a new component.

component.id A unique number Serena Release Automation assigns
to distinguish the component from others. The
component id is created when a component is created
in Serena Release Automation.

resource.name A user defined name to distinguish it from other
resources. The resource name is entered when editing
or creating a new resource.

resource.id A unique number given to a resource. A resource id is
assigned when a new resource is created.

application.name A user defined name to distinguish it from others. An
application name is entered when editing or creating a
new application.

application.id A unique number given to an application. An application
id is assigned when a new application is created in
Serena Release Automation.

environment.name A user defined name to distinguish the environment
from others. An environment name is entered when
editing or creating a new environment.

environment.id A unique number given to an environment. An
environment id is assigned when a new environment is
created.

agent.id A unique number Serena Release Automation gives the
agent to distinguish it from others with similar names.
An agent id is assigned when it is installed on the
system.

Reference

218 Serena® Orchestrated Ops

Property Description

agent.name A user defined name to distinguish the agent from
others. The agents name can be entered by editing the
agent's conf/agent/installed.properties file and
restarting the agent.

stepname/propertyname Used in output from step

property_name Component or application process property; defined on
the process's Properties tab. Given value by whoever
runs the process.

component/property_name Component custom property; set on the component’s
Properties tab.

environment/property_name Environment property. Defined on the component’s or
environment’s Properties tab. While both use the same
syntax, the latter is not associated with any specific
component. Values are supplied on the associated
environment or component. A value set on component
environment overrides one with the same name set
directly on an environment property.

Component environment properties are versioned and
enable you to centralize properties, tracking type and
default values, for instance. Environment properties are
unversioned and provide ad-hoc lists of property=value
pairs.

resource/property_name Resource properties. This can include the built-in agent
properties as well as any custom properties. Each of
these have their own tab on the resource.

resource/role name/
property name

Resource role properties. These are defined on resource
roles, and the values are set when you add a role to a
resource.

application/property name Application custom properties. These are set on the
application’s properties tab.

system/property name Global system properties. These are set on the System
Properties page in the Settings area.

All of the following are comma-separated series of name=value, including each property
on the given object. This is useful for token replacement.

Serena Release Automation Guide 219

Name/Value Pairs table

Property Description

component/
allProperties

Selects all the properties with the same value in a given
component.

environment/
allProperties

Selects all the properties with the same value in a given
environment.

resource/allProperties Selects all properties with the same value in a given resource.

system/allProperties Selects all properties with the same value in a given system.

Command Line Client (CLI)
CLI is a command-line interface that provides access to the Serena Release Automation
server. It can be used to find or set properties, and perform numerous functions,
described below.

To install the tool, download the serena_ra-4.0.1.4384.zip from the Serena Release
Automation release page on Supportal (http://support.Serena.com).

Command Format
To perform a command, open a command window and invoke udclient along with the
command and parameters. Command's have the following format:

udclient [global-args...] [global-flags...]
<command> [args...]

The global arguments are:

Table 1. Glogal Arguments

Argument Description

-authtoken, –authtoken
Optional. Can be set via the environment variable
DS_AUTH_TOKEN. An authentication token
generated by the server. Either an authtoken or a
username and password is required.

-password, –password
Optional. Can be set via the environment variable
DS_PASSWORD. A password to authenticate with
the server. Either an authtoken or a username and
password is required.

Reference

220 Serena® Orchestrated Ops

http://support.Serena.com

Argument Description

-username, –username
Optional. Can be set via the environment variable
DS_USERNAME. A username to authenticate with the
server. Either an authtoken or a username and
password is required.

-weburl, –weburl
Required. Can be set via the environment variable
DS_WEB_URL. The base URL of the Serena Release
Automation server— http://ds.domain.com:8585.

The global flags are:

Table 2. Global Flags

Flag Description

-t,
–getTemplate

Show the JSON template for the command instead of running the
command. If a file argument is provided, the template will be output
to that file.

-h, –help Print the full description and help of the given command instead of
running the command.

-v, –verbose Print extra information during execution.

Note: CLI commands and parameters are case sensitive.

Here is an example using the getResources command:

udclient -weburl http://localhost:8080 -username admin -password admin getResources

Commands
Note: CLI commands do not support new lines. Sample entries are broken for
display purposes only.

addActionToRoleForApplications

Add action to a role for applications.

Format

udclient [global-args...] [global-flags...]
addActionToRoleForApplications [args...]

Serena Release Automation Guide 221

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

addActionToRoleForComponents

Add action to a role for components

Format

udclient [global-args...] [global-flags...]
addActionToRoleForComponents [args...]

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

addActionToRoleForEnvironments

Add action to a role for environments

Format

udclient [global-args...] [global-flags...]
addActionToRoleForEnvironments [args...]

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

addActionToRoleForResources

Add action to a role for resources

Format

udclient [global-args...] [global-flags...]
addActionToRoleForResources [args...]

Reference

222 Serena® Orchestrated Ops

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

addActionToRoleForUI

Add action to a role for the UI

Format

udclient [global-args...] [global-flags...]
addActionToRoleForUI [args...]

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

addComponentToApplication

Add a component to an Application.

Format

udclient [global-args...] [global-flags...]
addComponentToApplication [args...]

Options

-component, ––component
Required. Name of the component to add

-application, ––application
Required. Name of the application to add it to.

addGroupToRoleForApplication

Add a group to a role for an application

Format

udclient [global-args...] [global-flags...]
addGroupToRoleForApplication [args...]

Serena Release Automation Guide 223

Options

-group, ––group
Required. Name of the group

-role, ––role
Required. Name of the role

-application, ––application
Required. Name of the application

addGroupToRoleForComponent

Add a group to a role for a component

Format

udclient [global-args...] [global-flags...]
addGroupToRoleForComponent [args...]

Options

-group, ––group
Required. Name of the group

-role, ––role
Required. Name of the role

-component, ––component
Required. Name of the component

addGroupToRoleForEnvironment

Add a group to a role for an environment

Format

udclient [global-args...] [global-flags...]
addGroupToRoleForEnvironment [args...]

Options

-group, ––group
Required. Name of the group

-role, ––role
Required. Name of the role

Reference

224 Serena® Orchestrated Ops

-application, ––application
Required. Name of the application

-environment, ––environment
Required. Name of the environment

addGroupToRoleForResource

Add a group to a role for a resource

Format

udclient [global-args...] [global-flags...]
addGroupToRoleForResource [args...]

Options

-group, ––group
Required. Name of the group

-role, ––role
Required. Name of the role

-resource, ––resource
Required. Name of the resource

addGroupToRoleForUI

Add a group to a role for the UI.

Format

udclient [global-args...] [global-flags...]
addGroupToRoleForUI [args...]

Options

-group, ––group
Required. Name of the group

-role, ––role
Required. Name of the role

addLicense

Add a license to the server.

Serena Release Automation Guide 225

Format

udclient [global-args...] [global-flags...]
addLicense [args...]

Options

No options for this command.

addNameConditionToGroup

Add a name condition to a resource group. Only works with dynamic groups.

Format

udclient [global-args...] [global-flags...]
addNameConditionToGroup [args...]

Options

-comparison, ––comparison
Required. Type of the comparison

-value, ––value
Required. Value of the comparison

-group, ––group
Required. Path of the parent resource group

addPropertyConditionToGroup

Add a property condition to a resource group. Only works with dynamic groups.

Format

udclient [global-args...] [global-flags...]
addPropertyConditionToGroup [args...]

Options

-property, ––property
Required. Name of the property

-comparison, ––comparison
Required. Type of the comparison

-value, ––value
Required. Value of the comparison

Reference

226 Serena® Orchestrated Ops

-group, ––group
Required. Path of the parent resource group

addResourceToGroup

Add a resource to a resource group. Only works with static groups.

Format

udclient [global-args...] [global-flags...]
addResourceToGroup [args...]

Options

-resource, ––resource
Required. Name of the resource to add

-group, ––group
Required. Path of the resource group to add to

addRoleToResource

Add a role to a resource.

Format

udclient [global-args...] [global-flags...]
addRoleToResource [args...]

Options

-resource, ––resource
Required. Name of the parent resource.

-role, ––role
Required. Name of the new resource.

addRoleToResourceWithProperties

Add a role to a resource. This command takes a JSON request body. Use the -t flag to
view the template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
addRoleToResourceWithProperties [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

Serena Release Automation Guide 227

filename
Read JSON input from a file with the given filename. See command for requirements.

Options

No options for this command.

addUserToGroup

Add a user to a group

Format

udclient [global-args...] [global-flags...]
addUserToGroup [args...]

Options

-user, ––user
Required. Name of the user

-group, ––group
Required. Name of the group

addUserToRoleForApplication

Add a user to a role for an application

Format

udclient [global-args...] [global-flags...]
addUserToRoleForApplication [args...]

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

-application, ––application
Required. Name of the application

addUserToRoleForComponent

Add a user to a role for a component

Reference

228 Serena® Orchestrated Ops

Format

udclient [global-args...] [global-flags...]
addUserToRoleForComponent [args...]

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

-component, ––component
Required. Name of the component

addUserToRoleForEnvironment

Add a user to a role for an environment

Format

udclient [global-args...] [global-flags...]
addUserToRoleForEnvironment [args...]

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

-application, ––application
Required. Name of the application

-environment, ––environment
Required. Name of the environment

addUserToRoleForResource

Add a user to a role for a resource

Format

udclient [global-args...] [global-flags...]
addUserToRoleForResource [args...]

Serena Release Automation Guide 229

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

-resource, ––resource
Required. Name of the resource

addUserToRoleForUI

Add a user to a role for the UI

Format

udclient [global-args...] [global-flags...]
addUserToRoleForUI [args...]

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

addVersionFiles

Upload files to a version

Format

udclient [global-args...] [global-flags...]
addVersionFiles [args...]

Options

-component, ––component
Optional. Name/ID of the component (Only required if not using version ID)

-version, ––version
Required. Name/ID of the version

-base, ––base
Required. Local base directory for upload.
All files inside this will be sent.

Reference

230 Serena® Orchestrated Ops

-offset, ––offset
Optional. Target path offset (the directory in the version files
to which these files should be added)

addVersionStatus

Add a status to a version

Format

udclient [global-args...] [global-flags...]
addVersionStatus [args...]

Options

-component, ––component
Optional. Name/ID of the component (Only required if not using version ID)

-version, ––version
Required. Name/ID of the version

-status, ––status
Required. Name of the status to apply

createApplication

Create a new application. This command takes a JSON request body. Use the -t flag to
view the template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
createApplication [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

filename
Read JSON input from a file with the given filename. See command for requirements.

Options

No options for this command.

createApplicationProcess

Create a new application process. This command takes a JSON request body. Use the -t
flag to view the template for the data required for this command.

Serena Release Automation Guide 231

Format

udclient [global-args...] [global-flags...]
createApplicationProcess [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

filename
Read JSON input from a file with the given filename. See command for requirements.

Options

No options for this command.

createComponent

Create a new component. This command takes a JSON request body. Use the -t flag to
view the template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
createComponent [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

filename
Read JSON input from a file with the given filename. See command for requirements.

Options

No options for this command.

createComponentProcess

Create a new component process. This command takes a JSON request body. Use the -t
flag to view the template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
createComponentProcess [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

Reference

232 Serena® Orchestrated Ops

filename
Read JSON input from a file with the given filename. See command for requirements.

Options

No options for this command.

createDynamicResourceGroup

Create a new static resource group.

Format

udclient [global-args...] [global-flags...]
createDynamicResourceGroup [args...]

Options

-path, ––path
Required. Path to add the resource group to (parent resource group path).

-name, ––name
Required. Name of the new resource group.

createEnvironment

Create a new environment.

Format

udclient [global-args...] [global-flags...]
createEnvironment [args...]

Options

-application, ––application
Required. Application to add the environment to.

-name, ––name
Required. Name of the new environment.

-description, ––description
Optional. Description of the new environment.

-color, ––color
Optional. Color of the new environment.

-requireApprovals, ––requireApprovals
Optional. Does the environment require approvals?

Serena Release Automation Guide 233

createGroup

Add a new group

Format

udclient [global-args...] [global-flags...]
createGroup [args...]

Options

-group, ––group
Required. Name of the group

createMapping

Create a new mapping.

Format

udclient [global-args...] [global-flags...]
createMapping [args...]

Options

-environment, ––environment
Required. The environment for the mapping.

-component, ––component
Required. The component for the mapping.

-resourceGroupPath, ––resourceGroupPath
Required. The resource group for the apping.

-application, ––application
Optional. The application for the mapping.
Only necesary if specifying env name instead of id.

createResourceGroup

Create a new static resource group.

Format

udclient [global-args...] [global-flags...]
createResourceGroup [args...]

Options

-path, ––path
Required. Path to add the resource group to (parent resource group path).

Reference

234 Serena® Orchestrated Ops

-name, ––name
Required. Name of the new resource group.

createRoleForApplications

Create a role for applications

Format

udclient [global-args...] [global-flags...]
createRoleForApplications [args...]

Options

-role, ––role
Required. Name of the role

createRoleForComponents

Create a role for components

Format

udclient [global-args...] [global-flags...]
createRoleForComponents [args...]

Options

-role, ––role
Required. Name of the role

createRoleForEnvironments

Create a role for environments

Format

udclient [global-args...] [global-flags...]
createRoleForEnvironments [args...]

Options

-role, ––role
Required. Name of the role

createRoleForResources

Create a role for resources

Serena Release Automation Guide 235

Format

udclient [global-args...] [global-flags...]
createRoleForResources [args...]

Options

-role, ––role
Required. Name of the role

createRoleForUI

Create a role for the UI

Format

udclient [global-args...] [global-flags...]
createRoleForUI [args...]

Options

-role, ––role
Required. Name of the role

createSubresource

Create a new subresource.

Format

udclient [global-args...] [global-flags...]
createSubresource [args...]

Options

-parent, ––parent
Required. Name of the parent resource.

-name, ––name
Required. Name of the new resource.

-description, ––description
Optional. Description of the resource.

createUser

Add a new user This command takes a JSON request body. Use the -t flag to view the
template for the data required for this command.

Reference

236 Serena® Orchestrated Ops

Format

udclient [global-args...] [global-flags...]
createUser [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

filename
Read JSON input from a file with the given filename.
See command for requirements.

Options

No options for this command.

createVersion

Create a new version for a component

Format

udclient [global-args...] [global-flags...]
createVersion [args...]

Options

-component, ––component
Required. Name/ID of the component

-name, ––name
Required. Name of the new version

deleteGroup

Delete a group

Format

udclient [global-args...] [global-flags...]
deleteGroup [args...]

Options

-group, ––group
Required. Name of the group

deleteResourceGroup

null

Serena Release Automation Guide 237

Format

udclient [global-args...] [global-flags...]
deleteResourceGroup [args...]

Options

-group, ––group
Required. Path of the resource group to delete

deleteResourceProperty

Remove a custom property from a resource

Format

udclient [global-args...] [global-flags...]
deleteResourceProperty [args...]

Options

-resource, ––resource
Required. Name of the resource to configure

-name, ––name
Required. Name of the property

deleteUser

Delete a user

Format

udclient [global-args...] [global-flags...]
deleteUser [args...]

Options

-user, ––user
Required. Name of the user

exportGroup

Add a new group

Format

udclient [global-args...] [global-flags...]
exportGroup [args...]

Reference

238 Serena® Orchestrated Ops

Options

-group, ––group
Required. Name of the group

getApplication

Get a JSON representation of an application

Format

udclient [global-args...] [global-flags...]
getApplication [args...]

Options

-application, ––application
Required. Name of the application to look up.

getApplicationProcess

Get a JSON representation of an Application Process

Format

udclient [global-args...] [global-flags...]
getApplicationProcess [args...]

Options

-application, ––application
Required. Name of the application

-applicationProcess, ––applicationProcess
Required. Name of the process

getApplicationProcessRequestStatus

Get the status for an application request.

Format

udclient [global-args...] [global-flags...]
getApplicationProcessRequestStatus [args...]

Options

-request, ––request
Required. ID of the application process request to view

Serena Release Automation Guide 239

getApplications

Get a JSONArray representation of all applications

Format

udclient [global-args...] [global-flags...]
getApplications [args...]

Options

No options for this command.

getComponent

Get a JSON representation of a component

Format

udclient [global-args...] [global-flags...]
getComponent [args...]

Options

-component, ––component
Required. Name of the component to look up

getComponentProcess

Get a JSON representation of a componentProcess

Format

udclient [global-args...] [global-flags...]
getComponentProcess [args...]

Options

-component, ––component
Required. Name of the component

-componentProcess, ––componentProcess
Required. Name of the component

getComponents

Get a JSONArray representation of all components

Format

udclient [global-args...] [global-flags...]
getComponents [args...]

Reference

240 Serena® Orchestrated Ops

Options

No options for this command.

getComponentsInApplication

Get all components in an application

Format

udclient [global-args...] [global-flags...]
getComponentsInApplication [args...]

Options

-application, ––application
Required. Name of the application to get components for

getEnvironment

Get a JSON representation of an environment

Format

udclient [global-args...] [global-flags...]
getEnvironment [args...]

Options

-environment, ––environment
Required. Name of the environment to look up

getEnvironmentsInApplication

Get all environments in an application

Format

udclient [global-args...] [global-flags...]
getEnvironmentsInApplication [args...]

Options

-application, ––application
Required. Name of the application to get environments for

getMapping

Get a JSON representation of a mapping

Serena Release Automation Guide 241

Format

udclient [global-args...] [global-flags...]
getMapping [args...]

Options

-mapping, ––mapping
Required. ID of the mapping to look up

getResource

Get a JSON representation of a resource

Format

udclient [global-args...] [global-flags...]
getResource [args...]

Options

-resource, ––resource
Required. Name of the resource to look up

getResourceGroup

Get a JSON representation of a resource group

Format

udclient [global-args...] [global-flags...]
getResourceGroup [args...]

Options

-group, ––group
Required. Path of the resource group to show

getResourceGroups

Get a JSONArray representation of all resource groups

Format

udclient [global-args...] [global-flags...]
getResourceGroups [args...]

Options

No options for this command.

Reference

242 Serena® Orchestrated Ops

getResourcesInGroup

Get a JSONArray representation of all resources in a group

Format

udclient [global-args...] [global-flags...]
getResourcesInGroup [args...]

Options

-group, –group
Required. Path of the resource group

getResources

Get a JSONArray representation of all resources

Format

udclient [global-args...] [global-flags...]
getResources [args...]

Options

No options for this command.

getResourceProperty

Get the value of a custom property on a resource

Format

udclient [global-args...] [global-flags...]
getResourceProperty [args...]

Options

-resource, ––resource
Required. Name of the resource

-name, ––name
Required. Name of the property

getRoleForApplications

Get a JSON representation of a role

Format

udclient [global-args...] [global-flags...]
getRoleForApplications [args...]

Serena Release Automation Guide 243

Options

-role, ––role
Required. Name of the role

getRoleForComponents

Get a JSON representation of a role

Format

udclient [global-args...] [global-flags...]
getRoleForComponents [args...]

Options

-role, ––role
Required. Name of the role

getRoleForEnvironments

Get a JSON representation of a role

Format

udclient [global-args...] [global-flags...]
getRoleForEnvironments [args...]

Options

-role, ––role
Required. Name of the role

getRoleForResources

Get a JSON representation of a role

Format

udclient [global-args...] [global-flags...]
getRoleForResources [args...]

Options

-role, ––role
Required. Name of the role

getRoleForUI

Get a JSON representation of a role

Reference

244 Serena® Orchestrated Ops

Format

udclient [global-args...] [global-flags...]
getRoleForUI [args...]

Options

-role, ––role
Required. Name of the role

getUser

Get a JSON representation of a user

Format

udclient [global-args...] [global-flags...]
getUser [args...]

Options

-user, ––user
Required. Name of the user

importGroup

Add a new group This command takes a JSON request body. Use the -t flag to view the
template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
importGroup [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

filename
Read JSON input from a file with the given filename. See command for requirements.

Options

No options for this command.

importVersions

Run the source config integration for a component This command takes a JSON request
body. Use the -t flag to view the template for the data required for this command.

Serena Release Automation Guide 245

Format

udclient [global-args...] [global-flags...]
importVersions [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

filename
Read JSON input from a file with the given filename. See command for requirements.

Options

No options for this command.

login

Login for further requests

Format

udclient [global-args...] [global-flags...]
login [args...]

Options

No options for this command.

logout

Logout

Format

udclient [global-args...] [global-flags...]
logout [args...]

Options

No options for this command.

removeActionFromRoleForApplications

Add action to a role for applications

Format

udclient [global-args...] [global-flags...]
removeActionFromRoleForApplications [args...]

Reference

246 Serena® Orchestrated Ops

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

removeActionFromRoleForComponents

Add action to a role for components

Format

udclient [global-args...] [global-flags...]
removeActionFromRoleForComponents [args...]

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

removeActionFromRoleForEnvironments

Add action to a role for environments

Format

udclient [global-args...] [global-flags...]
removeActionFromRoleForEnvironments [args...]

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

removeActionFromRoleForResources

Add action to a role for resources

Format

udclient [global-args...] [global-flags...]
removeActionFromRoleForResources [args...]

Serena Release Automation Guide 247

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

removeActionFromRoleForUI

Add action to a role for the UI

Format

udclient [global-args...] [global-flags...]
removeActionFromRoleForUI [args...]

Options

-role, ––role
Required. Name of the role

-action, ––action
Required. Name of the action

removeGroupFromRoleForApplication

Remove a group to a role for an application

Format

udclient [global-args...] [global-flags...]
removeGroupFromRoleForApplication [args...]

Options

-group, ––group
Required. Name of the group

-role, ––role
Required. Name of the role

-application, ––application
Required. Name of the application

removeGroupFromRoleForComponent

Remove a group to a role for a component

Reference

248 Serena® Orchestrated Ops

Format

udclient [global-args...] [global-flags...]
removeGroupFromRoleForComponent [args...]

Options

-group, ––group
Required. Name of the group

-role, ––role
Required. Name of the role

-component, ––component
Required. Name of the component

removeGroupFromRoleForEnvironment

Remove a group to a role for an environment

Format

udclient [global-args...] [global-flags...]
removeGroupFromRoleForEnvironment [args...]

Options

-group, ––group
Required. Name of the group

-role, ––role
Required. Name of the role

-application, ––application
Required. Name of the application

-environment, ––environment
Required. Name of the environment

removeGroupFromRoleForResource

Remove a group to a role for a resource

Format

udclient [global-args...] [global-flags...]
removeGroupFromRoleForResource [args...]

Options

-group, ––group
Required. Name of the group

Serena Release Automation Guide 249

-role, ––role
Required. Name of the role

-resource, ––resource
Required. Name of the resource

removeGroupFromRoleForUI

Remove a group to a role for the UI

Format

udclient [global-args...] [global-flags...]
removeGroupFromRoleForUI [args...]

Options

-group, ––group
Required. Name of the group

-role, ––role
Required. Name of the role

removeResourceFromGroup

Remove a resource from a resource group. Only works with static groups.

Format

udclient [global-args...] [global-flags...]
removeResourceFromGroup [args...]

Options

-resource, ––resource
Required. Name of the resource to remove

-group, ––group
Required. Path of the resource group to remove from

removeRoleForApplications

Create a role for applications

Format

udclient [global-args...] [global-flags...]
removeRoleForApplications [args...]

Reference

250 Serena® Orchestrated Ops

Options

-role, ––role
Required. Name of the role

removeRoleForComponents

Create a role for components

Format

udclient [global-args...] [global-flags...]
removeRoleForComponents [args...]

Options

-role, ––role
Required. Name of the role

removeRoleForEnvironments

Create a role for environments

Format

udclient [global-args...] [global-flags...]
removeRoleForEnvironments [args...]

Options

-role, ––role
Required. Name of the role

removeRoleForResources

Create a role for resources

Format

udclient [global-args...] [global-flags...]
removeRoleForResources [args...]

Options

-role, ––role
Required. Name of the role

removeRoleForUI

Create a role for the UI

Serena Release Automation Guide 251

Format

udclient [global-args...] [global-flags...]
removeRoleForUI [args...]

Options

-role, ––role
Required. Name of the role

removeRoleFromResource

Remove a role from a resource.

Format

udclient [global-args...] [global-flags...]
removeRoleFromResource [args...]

Options

-resource, ––resource
Required. Name of the parent resource.

-role, ––role
Required. Name of the new resource.

removeUserFromGroup

Remove a user from a group

Format

udclient [global-args...] [global-flags...]
removeUserFromGroup [args...]

Options

-user, ––user
Required. Name of the user

-group, ––group
Required. Name of the group

removeUserFromRoleForApplication

Remove a user to a role for an application

Format

udclient [global-args...] [global-flags...]
removeUserFromRoleForApplication [args...]

Reference

252 Serena® Orchestrated Ops

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

-application, ––application
Required. Name of the application

removeUserFromRoleForComponent

Remove a user to a role for a component

Format

udclient [global-args...] [global-flags...]
removeUserFromRoleForComponent [args...]

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

-component, ––component
Required. Name of the component

removeUserFromRoleForEnvironment

Remove a user to a role for an environment

Format

udclient [global-args...] [global-flags...]
removeUserFromRoleForEnvironment [args...]

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

-application, ––application
Required. Name of the application

-environment, ––environment
Required. Name of the environment

Serena Release Automation Guide 253

removeUserFromRoleForResource

Remove a user to a role for a resource

Format

udclient [global-args...] [global-flags...]
removeUserFromRoleForResource [args...]

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

-resource, ––resource
Required. Name of the resource

removeUserFromRoleForUI

Remove a user to a role for the UI

Format

udclient [global-args...] [global-flags...]
removeUserFromRoleForUI [args...]

Options

-user, ––user
Required. Name of the user

-role, ––role
Required. Name of the role

repeatApplicationProcessRequest

Repeat an application process request.

Format

udclient [global-args...] [global-flags...]
repeatApplicationProcessRequest [args...]

Options

-request, ––request
Required. ID of the application process request to repeat

Reference

254 Serena® Orchestrated Ops

requestApplicationProcess

Submit an application process request to run immediately. This command takes a JSON
request body. Use the -t flag to view the template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
requestApplicationProcess [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

filename
Read JSON input from a file with the given filename. See command for requirements.

Options

No options for this command.

setComponentEnvironmentProperty

Set property on component/environment mapping

Format

udclient [global-args...] [global-flags...]
setComponentEnvironmentProperty [args...]

Options

-propName, ––propName
Required. Name of the property to set

-propValue, ––propValue
Required. Value of the property to set

-component, ––component
Required. Name of the component to look up

-environment, ––environment
Required. Name or id of the environment to look up

-application, ––application
Optional. Name of the application to look up

setComponentProperty

Set property on component

Serena Release Automation Guide 255

Format

udclient [global-args...] [global-flags...]
setComponentProperty [args...]

Options

-propName, ––propName
Required. Name of the property to set

-propValue, ––propValue
Required. Value of the property to set

-component, ––component
Required. Name of the component to look up

setResourceProperty

Set a custom property on a resource

Format

udclient [global-args...] [global-flags...]
setResourceProperty [args...]

Options

-resource, ––resource
Required. Name of the resource to configure

-name, ––name
Required. Name of the property

-value, ––value
Optional. New value for the property

updateUser

Add a new user This command takes a JSON request body. Use the -t flag to view the
template for the data required for this command.

Format

udclient [global-args...] [global-flags...]
updateUser [args...] [-] [filename]

-
Read JSON input from the stdin. See command for requirements.

filename
Read JSON input from a file with the given filename. See command for requirements.

Reference

256 Serena® Orchestrated Ops

Options

-user, ––user
Required. Name of the user

Serena Release Automation Guide 257

	Table of Contents
	Serena Release Automation
	About This Documentation
	Organization of this Documentation
	Product Support
	Documentation Conventions

	Overview
	Server
	Agents
	Repository
	Security
	Components
	Component Processes
	Application Process
	Environments
	Plug-ins
	Component Versions and the CodeStation Repository

	Applications
	Snapshots

	Agents
	Resources
	Resource Groups

	Architecture
	Service Tier
	Clients

	Relational Database
	File Storage—Codestation
	Relocating Codestation
	Data Center Configuration
	Cold Standby
	Platform Considerations
	Typical Data Center Configurations

	Agents
	Server-Agent Communication
	Remote Agents: Crossing Network Boundaries and Firewalls
	Agent Security
	User Impersonation
	User Impersonation on UNIX/Linux Using sudo (or su)
	Impersonation on Windows Systems
	Impersonating the LocalSystem Account

	SSL Mutual Key-based Authentication

	Getting Started
	Single Sign On (SSO) with Serena Business Manager (SBM)
	Integrating with Serena Business Manager using SSO
	Configuring Tomcat for SSO
	Single Sign Out

	Serena Release Automation Roadmap
	Installing Serena Release Automation
	Creating a Component
	Creating an Application
	Deploy the Component

	Installing Servers and Agents
	Installation Recommendations
	System Requirements
	Server Minimum Installation Requirements
	Server Installation Recommendations
	Agent Minimum Requirements
	32- and 64-bit JVM Support

	Downloading Serena Release Automation
	Database Installation
	Installing Oracle
	Installing MySQL
	Installing Microsoft SQL Server

	Server Installation
	Interactive Server Installation (Windows, Linux/UNIX (AIX, Solaris)
	(Windows) Server Install: Destination Folder Panel
	(Windows) Server Install: Administrator Details Panel

	Server Installation (Other UNIX Platforms)
	Silent Mode Server Installation
	(Windows) Server Silent Installation
	(Windows) Server Silent Install Options
	(Windows) Server Silent Install: OptionsFile.txt Examples
	Derby Database optionsFile.txt example
	"Use Existing Settings" optionsFile.txt example
	MySQL Database optionsFile.txt example
	Oracle Database optionsFile.txt example
	MS SQL Server Database optionsFile.txt example
	"Skip Database Creation" optionsFile.txt example
	(Linux/UNIX Platforms) Server Silent Install
	(Linux/UNIX) Server Silent Install Options
	(Linux/UNIX) Server silent install options table
	(Linux/UNIX) Server Silent Install: optionsFile.txt Examples
	Derby Database optionsFile.txt example
	MySQL Database optionsFile.txt example
	Oracle Database optionsFile.txt example
	MS SQL Server Database optionsFile.txt example

	Agent Installation
	Interactive Agent Installation (Windows, Linux/UNIX (AIX, Solaris, HP-UX)
	Silent Mode Agent Installation
	(Windows) Agent Silent Installation
	(Windows) Agent Silent Install Options
	(Windows) Agent Silent Install: OptionsFile.txt Example
	Example: Agent Windows optionsFile.txt
	(Linux/UNIX Platforms) Agent Silent Installation
	(Linux/UNIX) Agent Silent Install Options
	(Linux/UNIX) Agent Silent Install: OptionsFile.txt Examples
	Example 1: Agent Linux/UNIX platforms optionsFile.txt
	Example 2: Agent Linux/UNIX platforms optionsFile.txt

	Installing Agent Relays
	Distributing Server Processing with Active/Active
	Active/Active Server Installation
	Connecting Agents to a Single "Endpoint"
	Connecting Agents to a Series of Server "Endpoints"

	SSL Configuration
	Configuring SSL Unauthenticated Mode for HTTP Communications
	Configuring Mutual Authentication
	Property Settings for Mutual Authentication
	Adding an Alias to an Agent
	Adding an Alias to an Agent Relay
	Mutual Authentication: Server and Agent(s)
	Mutual Authentication: Server, Agent Relay, and Agent(s)

	Running Serena Release Automation
	Running the Server
	Running an Agent
	Running an Agent Relay
	Accessing Serena Release Automation

	Quick Start—helloWorld Deployment
	helloWorld: Creating Components
	helloWorld Deployment
	helloWorld: A Note Before You Begin
	helloWorld: Component Version
	helloWorld: Component Process
	helloWorld: Process Design
	helloWorld: Application
	helloWorld: Creating an Application
	Adding the helloWorld Component to the Application
	helloWorld: Adding an Environment to the Application
	helloWorld: Adding a Process to the Application
	Designing the Process Steps
	Running the Application

	Using Serena Release Automation
	Components
	Component Versions and the CodeStation Repository
	Component Processes
	Creating Components
	Importing/Exporting Components
	Exporting Components
	Importing Components

	Component Properties
	Component Properties table

	Component Versions
	Importing Versions Manually
	Importing Versions Automatically
	Component Version Statuses
	Deleting Component Versions
	Inactivating Component Versions
	Component Change Logs

	Component Processes
	Configuring Component Processes

	Process Editor
	Displaying the Process Editor
	Using the Process Editor
	Available Views table
	Typical Process Step
	Anatomy of a Step table

	Adding Process Steps
	Connecting Process Steps
	Process Properties
	Switch Steps and Conditional Processes
	Process with Switch Step

	Component Manual Tasks
	Creating Component Manual Tasks
	Using Component Manual Tasks
	Component Manual Task Properties

	Post-Processes
	Component Templates
	Creating a Component Template
	Importing/Exporting Templates
	Exporting Templates
	Importing Templates

	Component Template Properties
	Component Template Properties table

	Using Component Templates
	Configuration Templates

	Deleting and Deactivating Components

	Resources
	Resource Groups
	Creating a Resource Group

	Resource Roles
	Role Properties

	Agents
	Remote Agent Installation
	Managing Agents Remotely
	Agent Pools
	Creating an Agent Pool
	Managing Agent Pools

	Applications
	Environments
	Application Processes
	Snapshots
	Creating Applications
	Adding Components to an Application
	Importing/Exporting Applications
	Exporting Applications
	Importing Applications

	Application Environments
	Creating an Environment
	Mapping Resources to an Environment
	Environment Properties
	Application Processes
	Creating Application Processes

	Application Process Steps
	Application Process Step Details
	Finish
	Install Component
	Install Component Properties table
	Uninstall Component
	Uninstall Component Properties table
	Rollback Component
	Rollback Component Properties
	Manual Application Task (Utility)
	Manual Application Task Properties table

	Application Manual Tasks
	Creating Application Manual Tasks
	Using Manual Tasks

	Approval Process
	Work Items
	View Details of Process
	Responding to Request

	Snapshots
	Creating Snapshots

	Application Gates
	Creating Gates
	Structure of the default.xml File
	<status> Attributes table

	Deployments
	Scheduling Deployments

	Reports
	Deployment Reports table
	Security Reports table
	Deployment Reports
	Deployment Detail Report
	Deployment Detail Fields
	Deployment Detail Fields table
	Running the Deployment Detail Report
	Report Samples: Deployment Detail
	Sample Reports table

	Deployment Count Report
	Deployment Count fields
	Deployment Count Fields table
	Running the Deployment Count Report
	Report Samples: Deployment Count
	Sample Reports

	Deployment Average Duration Report
	Deployment Average Duration Fields
	Average Duration Fields
	Running the Deployment Average Duration Report
	Sample Reports: Deployment Average Duration
	Sample Reports table

	Deployment Total Duration Report
	Deployment Total Duration Fields
	Total Duration Fields table
	Running the Deployment Total Duration Report
	Sample Reports: Deployment Total Duration
	Sample Reports table

	Security Reports
	Application Security Report
	Application Security Fields
	Application Security Fields table

	Component Security Report
	Component Security Fields
	Component Security Fields table

	Environment Security Report
	Environment Security Fields
	Environment Security Fields table

	Resource Security Report
	Resource Security Fields
	Resource Security Fields table

	Saving and Printing Reports
	Saving Report Data
	Saving Report Filters
	Printing Reports

	Administration
	Serena Release Automation Security
	Groups
	Roles and Permissions
	Setting up Security
	Roles and Permissions
	Default Roles
	Creating and Editing Roles
	Agent Roles
	Application Roles
	Component Template Roles
	Component Roles
	Environment Roles
	License Roles
	Resource Roles

	Default Permissions
	Setting Default Permissions

	Authorization Realms
	Creating an LDAP Authorization Realm
	Creating Authorization Groups

	Authentication Realms
	Creating an Authentication Realm
	Creating an LDAP Authentication Realm
	LDAP Authentication Realm Properties table

	Authentication Realm Users
	Importing LDAP Users
	To Import LDAP Users

	Tokens
	User Interface Security
	System Security

	System Settings
	Licenses
	Adding a License
	Adding Agents to a License
	Modifying or Deleting a License

	Logging
	Network Relay
	Notifications
	Creating Notification Templates

	Post-Processing Scripts
	Preview Version Cleanup
	Output Log
	Locks
	Managing Locks

	Installing Plug-ins

	Configuration
	Configuration tab
	Application Configuration
	Adding Application Configuration Properties
	Modifying and Deleting Application Configuration Properties

	Component Configuration
	Environment Configuration

	Inventory
	Resources Inventory
	Component Inventory
	Environment Inventory

	Reference
	Basic Fields
	Fields Available for All Source Types table
	File System (Basic)
	File System (Versioned)
	Serena Dimensions CM
	Serena PVCS

	Plug-ins
	Plug-ins at Run-time
	Creating Plug-ins
	The plugin.xml File
	<header> Element

	Plug-in Steps: <step-type> Element
	Step Properties: <properties> Element
	<property> Element table

	<command> Element
	<arg> Element Attributes table

	The <post-processing> Element
	Upgrading Plug-ins
	The info.xml File

	Standard Plug-ins
	Shell Integration
	Serena Package Manager

	Serena Release Automation Properties
	Serena Release Automation Properties table
	Name/Value Pairs table

	Command Line Client (CLI)
	Command Format
	Commands
	addActionToRoleForApplications
	Format
	Options

	addActionToRoleForComponents
	Format
	Options

	addActionToRoleForEnvironments
	Format
	Options

	addActionToRoleForResources
	Format
	Options

	addActionToRoleForUI
	Format
	Options

	addComponentToApplication
	Format
	Options

	addGroupToRoleForApplication
	Format
	Options

	addGroupToRoleForComponent
	Format
	Options

	addGroupToRoleForEnvironment
	Format
	Options

	addGroupToRoleForResource
	Format
	Options

	addGroupToRoleForUI
	Format
	Options

	addLicense
	Format
	Options

	addNameConditionToGroup
	Format
	Options

	addPropertyConditionToGroup
	Format
	Options

	addResourceToGroup
	Format
	Options

	addRoleToResource
	Format
	Options

	addRoleToResourceWithProperties
	Format
	Options

	addUserToGroup
	Format
	Options

	addUserToRoleForApplication
	Format
	Options

	addUserToRoleForComponent
	Format
	Options

	addUserToRoleForEnvironment
	Format
	Options

	addUserToRoleForResource
	Format
	Options

	addUserToRoleForUI
	Format
	Options

	addVersionFiles
	Format
	Options

	addVersionStatus
	Format
	Options

	createApplication
	Format
	Options

	createApplicationProcess
	Format
	Options

	createComponent
	Format
	Options

	createComponentProcess
	Format
	Options

	createDynamicResourceGroup
	Format
	Options

	createEnvironment
	Format
	Options

	createGroup
	Format
	Options

	createMapping
	Format
	Options

	createResourceGroup
	Format
	Options

	createRoleForApplications
	Format
	Options

	createRoleForComponents
	Format
	Options

	createRoleForEnvironments
	Format
	Options

	createRoleForResources
	Format
	Options

	createRoleForUI
	Format
	Options

	createSubresource
	Format
	Options

	createUser
	Format
	Options

	createVersion
	Format
	Options

	deleteGroup
	Format
	Options

	deleteResourceGroup
	Format
	Options

	deleteResourceProperty
	Format
	Options

	deleteUser
	Format
	Options

	exportGroup
	Format
	Options

	getApplication
	Format
	Options

	getApplicationProcess
	Format
	Options

	getApplicationProcessRequestStatus
	Format
	Options

	getApplications
	Format
	Options

	getComponent
	Format
	Options

	getComponentProcess
	Format
	Options

	getComponents
	Format
	Options

	getComponentsInApplication
	Format
	Options

	getEnvironment
	Format
	Options

	getEnvironmentsInApplication
	Format
	Options

	getMapping
	Format
	Options

	getResource
	Format
	Options

	getResourceGroup
	Format
	Options

	getResourceGroups
	Format
	Options

	getResourcesInGroup
	Format
	Options

	getResources
	Format
	Options

	getResourceProperty
	Format
	Options

	getRoleForApplications
	Format
	Options

	getRoleForComponents
	Format
	Options

	getRoleForEnvironments
	Format
	Options

	getRoleForResources
	Format
	Options

	getRoleForUI
	Format
	Options

	getUser
	Format
	Options

	importGroup
	Format
	Options

	importVersions
	Format
	Options

	login
	Format
	Options

	logout
	Format
	Options

	removeActionFromRoleForApplications
	Format
	Options

	removeActionFromRoleForComponents
	Format
	Options

	removeActionFromRoleForEnvironments
	Format
	Options

	removeActionFromRoleForResources
	Format
	Options

	removeActionFromRoleForUI
	Format
	Options

	removeGroupFromRoleForApplication
	Format
	Options

	removeGroupFromRoleForComponent
	Format
	Options

	removeGroupFromRoleForEnvironment
	Format
	Options

	removeGroupFromRoleForResource
	Format
	Options

	removeGroupFromRoleForUI
	Format
	Options

	removeResourceFromGroup
	Format
	Options

	removeRoleForApplications
	Format
	Options

	removeRoleForComponents
	Format
	Options

	removeRoleForEnvironments
	Format
	Options

	removeRoleForResources
	Format
	Options

	removeRoleForUI
	Format
	Options

	removeRoleFromResource
	Format
	Options

	removeUserFromGroup
	Format
	Options

	removeUserFromRoleForApplication
	Format
	Options

	removeUserFromRoleForComponent
	Format
	Options

	removeUserFromRoleForEnvironment
	Format
	Options

	removeUserFromRoleForResource
	Format
	Options

	removeUserFromRoleForUI
	Format
	Options

	repeatApplicationProcessRequest
	Format
	Options

	requestApplicationProcess
	Format
	Options

	setComponentEnvironmentProperty
	Format
	Options

	setComponentProperty
	Format
	Options

	setResourceProperty
	Format
	Options

	updateUser
	Format
	Options

