
SERENA

DIMENSIONS CM 14.3.2
Git Connector User's Guide

Serena Proprietary and Confidential Information

Copyright © 2014–2016 Serena Software, Inc. All rights reserved.
This document, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. Except as permitted
by such license, no part of this publication may be reproduced, photocopied, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
recording, or otherwise, without the prior written permission of Serena. Any reproduction
of such software product user documentation, regardless of whether the documentation
is reproduced in whole or in part, must be accompanied by this copyright statement in its
entirety, without modification.
This document contains proprietary and confidential information, and no reproduction or
dissemination of any information contained herein is allowed without the express
permission of Serena Software.
The content of this document is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Serena. Serena
assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document.

Trademarks
Serena, TeamTrack, StarTool, PVCS, Comparex, Dimensions, Prototype Composer,
Mariner, and ChangeMan are registered trademarks of Serena Software, Inc. The Serena
logo and Version Manager are trademarks of Serena Software, Inc. All other products or
company names are used for identification purposes only, and may be trademarks of their
respective owners.

U.S. Government Rights
Any Software product acquired by Licensee under this Agreement for or on behalf of the
U.S. Government, its agencies and instrumentalities is "commercial software" as defined
by the FAR. Use, duplication, and disclosure by the U.S. Government is subject to the
restrictions set forth in the license under which the Software was acquired. The
manufacturer is Serena Software, Inc., 2345 NW Amberbrook Drive, Suite 200, Hillsboro,
OR 97006.

Publication date: November 2016

Git Connector User’s Guide 3

Table of Contents

Chapter 1 Overview . 5
About the Dimensions CM Git Connector. 6

Architecture . 6
Installing and Licensing . 7
Typical Workflow . 7
Request Management. 8
Using CAC with the Git Connector . 8

Chapter 2 Command Reference . 9
Command Syntax . 10
General Parameters . 10
Reference . 11

clone . 11
fetch . 12
pull . 13
push . 14

4 Serena® Dimensions® CM

Git Connector User’s Guide 5

Chapter 1
Overview

About the Dimensions CM Git Connector 6
Installing and Licensing 7
Typical Workflow 7
Request Management 8

6 Serena® Dimensions® CM

About the Dimensions CM Git Connector
The Dimensions CM Git Connector brings central control and security to teams using Git,
allowing them to store code in a CM stream. Streams can be shared by developers using
Git or Dimensions CM. The connector is a command-line tool.

 Use the clone command to clone a stream from Dimensions CM and populate the
master branch in a Git repository with the tip of a stream.

 Use the fetch and pull commands to update a local Git repository with changes
from Dimensions CM. When you pull changes, each CM changeset becomes a commit
in a local Git repository.

 Use the push command to push changes from a Git repository into Dimensions CM.
Each Git commit becomes a Dimensions CM changeset, including the user ID and
timestamp.

NOTE Git users are automatically registered as CM users when their commits are
pushed.

Architecture
Dimensions CM is an enterprise SCCM (Software Configuration and Change Management)
repository that securely stores code and artifacts from teams using Git, Subversion, and
Dimensions CM. Additional features include:

 Peer review and continuous inspection with Dimensions CM Pulse.

 Automation of the path to production using the Promotion Pipeline and Deployment
Automation.

 Installing and Licensing

Git Connector User’s Guide 7

Installing and Licensing
The Dimensions CM Git Connector is a separate installer that you can download from the
Serena Support web site.

IMPORTANT! The connector requires an additional license.

Typical Workflow

A A development stream is under the central control of Dimensions CM.

B A GIT developer clones the stream into their local GIT repository.

C The GIT developer branches, commits, and works as normal with their GIT
repository.

D Another developer is using a Dimensions CM client. They update their local CM
controlled work area from the same stream.

E The second developer works on the code and delivers their changes to Dimensions
CM.

F The GIT developer tries to deliver their changes. The deliver fails as there are
changes in the stream that they need to merge.

G The GIT developer pulls the changes and merges them into their local GIT
repository.

H The Git developer can now successfully deliver their changes to Dimensions CM.

http://support.serena.com/
http://support.serena.com/

8 Serena® Dimensions® CM

Request Management
You can specify one or more Dimensions CM requests when you commit changes to your
local Git repository. Specify the requests IDs in the following format in the commit
comment (separate request IDs with a comma):

git commit -m "[<request ID>,<request ID>] <your commit message>"

When you push changes from a Git repository to Dimensions CM you can override the
requests you specified during the commit by using the --requestids parameter. For
detail see page 14.

Using CAC with the Git Connector
If you are going to use Common Access Card (CAC) with the Git Connector:

1 Open the following file:

%USERPROFILE%\.gitdm\gitdm.properties

For instance, if you are logged in as jsmith, open:

C:\Users\jsmith\.gitdm\gitdm.properties

Locate this line:

Smart Card library path

activclient-location=

Change the line to point to the location of your ActivClient PKCS DLL file, for example:

Smart Card library path

activclient-location=C:\\Program
Files\\ActivIdentity\\ActivClient\\acpkcs211.dll

2 Add the server's public certificate, and any certificates in the chain, to the correct
cacerts file.

To confirm which keystore you need to update, open %DM_ROOT%\prog\git-dm.cmd
and check which JAVA_HOME the Git Connector is using. Verify that this JAVA_HOME
cacerts file has been updated correctly.

Git Connector User’s Guide 9

Chapter 2
Command Reference

Command Syntax 10
General Parameters 10
Reference 11

10 Serena® Dimensions® CM

Command Syntax
git-dm <command> <parameters>

General Parameters
The following optional parameters are available for each command:

--card

Use smart card authentication.

--help

Displays help for the current command.

--password

Enter a password for a CM user. Not required if you are using a smart card.

--quiet

Does not display the progress of the output.

--username

Enter a CM user name. Not required if you are using a smart card.

--verbose

Displays the progress of the output.

--version

Displays the version of the Git Connector.

 Reference

Git Connector User’s Guide 11

Reference

clone
git-dm clone <server> <product:stream> [directory]

Description

Initializes a Git repository from a Dimensions CM stream.

Parameters and Qualifiers

<server>

Specifies the Dimensions CM server and database connection in the following format:

scm:dimensions://hostname/dbname@dbconnection

<product:stream>

Specifies the Dimensions CM product and stream in the following format:

product:stream

[directory]

(Optional) Specifies a directory where the stream will be cloned.

Example

git-dm clone
scm:dimensions://cmserver/cm_typical@dim14 QLARIUS:SAVINGS
C:\temp\savings --username dinesh -password <password>

This example clones the stream SAVINGS in the product QLARIUS from the Dimensions
CM server cmserver and the base database cm_typical@DIM14. The contents of the
stream are cloned into a new Git repository in the folder C:\temp\savings. The
command is performed as the user dinesh.

12 Serena® Dimensions® CM

fetch
git-dm fetch

Description

Fetches the latest code from a Dimensions CM stream into the FETCH_HEAD in the local
Git repository.

Parameters and Qualifiers

--deep

(Default) Creates commits for each Dimensions CM changeset since the last fetch you
performed.

--force

Forces a fetch of the last Dimensions CM changeset that you downloaded.

--shallow

Creates a single commit for all the CM changesets.

Example

git-dm fetch
scm:dimensions://cmserver/cm_typical@dim14 QLARIUS:SAVINGS
--force --card

This example fetches any changes made in Dimensions CM into the local Git repository
and specifies multiple CM requests. The --force option overwrites any local changes that
have not been pushed to Dimensions CM. The --card option prompts the user to insert
their CAC card, select a certificate, and enter their PIN to log into Dimensions CM.

 Reference

Git Connector User’s Guide 13

pull
git-dm pull

Description

Pulls the latest code from a Dimensions CM stream and merges the changes into the Git
master branch.

Parameters and Qualifiers

--deep

Creates commits for each Dimensions CM changeset since the last fetch you
performed.

--force

Forces a fetch of the last Dimensions CM changeset that you downloaded.

--ours

Preserves local changes when merging.

--rebase

Rebases a Git master branch on top of the latest changes from Dimensions CM after a
fetch.

--resolve

(Default) Resolve conflicts when merging.

--shallow

Creates a single commit for all the CM changesets.

--theirs

Preserves remote changes when merging.

Example

git-dm pull
scm:dimensions://cmserver/cm_typical@dim14 QLARIUS:SAVINGS
--shallow --ours --username dinesh -password <password>

This example pulls any changes made in Dimensions CM into the local Git repository. The
--shallow option creates a single commit in the local Git repository for all the
changesets that were created in CM. If conflicts are found during the pull, the --ours
option ensures that the local changes are preserved and not merged or overwritten by the
remote changes. The command is performed as the user dinesh.

14 Serena® Dimensions® CM

push
git-dm push

Description

Pushes changes to a Dimensions CM stream from a Git repository.

Parameters and Qualifiers

--autoignore

Automatically selects the commit paths in the Git repository tree to be ignored when a
commit has more than one parent resulting from a merge.

--deep

Creates commits for each Dimensions CM changeset since the last fetch you
performed.

--message <text>

Specifies a message to be added as a comment to the CM changeset.

--metadata

Includes the Git commit metadata in the changeset (use with --deep).

--no-metadata

(Default) Does not include the Git commit metadata in the changeset (use with
--deep).

--renamemode <RenameMode>

Specifies a rename mode to use when pending changes. Specify one of the following:

all

justFiles (default)

none

--requestids <CM request ID>

When you push changes from a Git repository into Dimensions CM, use this parameter
to override the requests previously specified for Git. If you use --deep the requests
specified as a command line option are added to the requests specified in the commit
comment (if any).

--shallow

Creates a single commit for all the CM changesets.

--ignore

Specifies commit IDs to be ignored when performing a deep push if one commit has
more than one parent resulting from a merge. For example:

--ignore=id1,id2

 Reference

Git Connector User’s Guide 15

Example

git-dm push --requestids QLARIUS_CR_39 --username dinesh
-password <password>

This example pushes changes from the local Git repository into Dimensions CM. Any
changesets that are created are related to the CM request QLARIUS_CR_39. The
command is performed as the user dinesh.

Privileges

The user performing the push operation must have the following privilege:

Deliver files into project/stream

If a user makes a commit to Git but is not a registered CM user, then the user performing
the push of the commit must have the following privilege. This is required for the user to
be automatically registered with CM:

Manage Users and Group Definitions

For more details see the Process Configuration Guide.

16 Serena® Dimensions® CM

	Table of Contents
	Overview
	About the Dimensions CM Git Connector
	Architecture

	Installing and Licensing
	Typical Workflow
	Request Management
	Using CAC with the Git Connector

	Command Reference
	Command Syntax
	General Parameters
	Reference
	clone
	fetch
	pull
	push

